Datasets:
lmqg
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
qg_squadshifts / qg_squadshift.py
asahi417's picture
update
d22f92b
raw
history blame
3.43 kB
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[SQuAD Shifts](https://modestyachts.github.io/squadshifts-website/index.html) dataset for question generation (QG) task."""
_URL = 'https://huggingface.co/datasets/asahi417/qg_squadshift/raw/main/data/processed'
_DOMAINS = ['new_wiki', 'nyt', 'reddit', 'amazon']
_FILESIZE = [4, 5, 5, 5]
class QGSQuADShiftsConfig(datasets.BuilderConfig):
"""BuilderConfig for SquadQG"""
def __init__(self, **kwargs):
"""BuilderConfig for SquadQG.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QGSQuADShiftsConfig, self).__init__(**kwargs)
class QGSQuADShifts(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [QGSQuADShiftsConfig(name="default", description="All domain.")]
BUILDER_CONFIGS += [QGSQuADShiftsConfig(name=i, description=i) for i in _DOMAINS]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"answer": datasets.Value("string"),
"question": datasets.Value("string"),
"sentence": datasets.Value("string"),
"paragraph": datasets.Value("string"),
"sentence_answer": datasets.Value("string"),
"paragraph_answer": datasets.Value("string"),
"paragraph_sentence": datasets.Value("string"),
"paragraph_id": datasets.Value("string"),
"question_subj_level": datasets.Value("int32"),
"answer_subj_level": datasets.Value("int32"),
"domain": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/asahi417/lm-question-generation"
)
def _split_generators(self, dl_manager):
if self.config.name == 'default':
downloaded_file = dl_manager.download_and_extract({
'train': [f"{_URL}/{i}.train.jsonl" for i in _DOMAINS],
'dev': [f"{_URL}/{i}.dev.jsonl" for i in _DOMAINS],
'test': [f"{_URL}/{i}.test.jsonl" for i in _DOMAINS]
})
else:
downloaded_file = dl_manager.download_and_extract({
'train': [f"{_URL}/{self.config.name}.train.jsonl"],
'dev': [f"{_URL}/{self.config.name}.dev.jsonl"],
'test': [f"{_URL}/{self.config.name}.test.jsonl"]
})
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_file["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": downloaded_file["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": downloaded_file["test"]})
]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = f.read().split('\n')
if _list[-1] == '':
_list = _list[:-1]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1