Datasets:
metadata
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- image-to-text
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 392473380.05
num_examples: 76318
download_size: 383401054
dataset_size: 392473380.05
- config_name: full
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 392478490.025
num_examples: 76319
- name: validation
num_bytes: 43364061.55
num_examples: 8475
- name: test
num_bytes: 47643036.303
num_examples: 9443
download_size: 473618552
dataset_size: 483485587.878
- config_name: human_handwrite
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 16181778
num_examples: 1200
- name: validation
num_bytes: 962283
num_examples: 68
- name: test
num_bytes: 906906
num_examples: 70
download_size: 18056029
dataset_size: 18050967
- config_name: human_handwrite_print
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 3152122.8
num_examples: 1200
- name: validation
num_bytes: 182615
num_examples: 68
- name: test
num_bytes: 181698
num_examples: 70
download_size: 1336052
dataset_size: 3516435.8
- config_name: small
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 261296
num_examples: 50
- name: validation
num_bytes: 156489
num_examples: 30
- name: test
num_bytes: 156489
num_examples: 30
download_size: 588907
dataset_size: 574274
- config_name: synthetic_handwrite
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 496610333.066
num_examples: 76266
- name: validation
num_bytes: 63147351.515
num_examples: 9565
- name: test
num_bytes: 62893132.805
num_examples: 9593
download_size: 616418996
dataset_size: 622650817.3859999
configs:
- config_name: default
data_files:
- split: train
path: full/train-*
- config_name: full
data_files:
- split: train
path: full/train-*
- split: validation
path: full/validation-*
- split: test
path: full/test-*
- config_name: human_handwrite
data_files:
- split: train
path: human_handwrite/train-*
- split: validation
path: human_handwrite/validation-*
- split: test
path: human_handwrite/test-*
- config_name: human_handwrite_print
data_files:
- split: train
path: human_handwrite_print/train-*
- split: validation
path: human_handwrite_print/validation-*
- split: test
path: human_handwrite_print/test-*
- config_name: small
data_files:
- split: train
path: small/train-*
- split: validation
path: small/validation-*
- split: test
path: small/test-*
- config_name: synthetic_handwrite
data_files:
- split: train
path: synthetic_handwrite/train-*
- split: validation
path: synthetic_handwrite/validation-*
- split: test
path: synthetic_handwrite/test-*
tags:
- code
LaTeX OCR 的数据仓库
本数据仓库是专为 LaTeX_OCR 及 LaTeX_OCR_PRO 制作的数据,来源于 https://zenodo.org/record/56198#.V2p0KTXT6eA
以及 https://www.isical.ac.in/~crohme/
以及我们自己构建。
如果这个数据仓库有帮助到你的话,请点亮 ❤️like ++
后续追加新的数据也会放在这个仓库 ~~
原始数据仓库在github LinXueyuanStdio/Data-for-LaTeX_OCR.
数据集
本仓库有 5 个数据集
small
是小数据集,样本数 110 条,用于测试full
是印刷体约 100k 的完整数据集。实际上样本数略小于 100k,因为用 LaTeX 的抽象语法树剔除了很多不能渲染的 LaTeX。synthetic_handwrite
是手写体 100k 的完整数据集,基于full
的公式,使用手写字体合成而来,可以视为人类在纸上的手写体。样本数实际上略小于 100k,理由同上。human_handwrite
是手写体较小数据集,更符合人类在电子屏上的手写体。主要来源于CROHME
。我们用 LaTeX 的抽象语法树校验过了。human_handwrite_print
是来自human_handwrite
的印刷体数据集,公式部分和human_handwrite
相同,图片部分由公式用 LaTeX 渲染而来。
使用
加载训练集
- name 可选 small, full, synthetic_handwrite, human_handwrite, human_handwrite_print
- split 可选 train, validation, test
>>> from datasets import load_dataset
>>> train_dataset = load_dataset("linxy/LaTeX_OCR", name="small", split="train")
>>> train_dataset[2]["text"]
\rho _ { L } ( q ) = \sum _ { m = 1 } ^ { L } \ P _ { L } ( m ) \ { \frac { 1 } { q ^ { m - 1 } } } .
>>> train_dataset[2]
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=200x50 at 0x15A5D6CE210>,
'text': '\\rho _ { L } ( q ) = \\sum _ { m = 1 } ^ { L } \\ P _ { L } ( m ) \\ { \\frac { 1 } { q ^ { m - 1 } } } .'}
>>> len(train_dataset)
50
加载所有
>>> from datasets import load_dataset
>>> dataset = load_dataset("linxy/LaTeX_OCR", name="small")
>>> dataset
DatasetDict({
train: Dataset({
features: ['image', 'text'],
num_rows: 50
})
validation: Dataset({
features: ['image', 'text'],
num_rows: 30
})
test: Dataset({
features: ['image', 'text'],
num_rows: 30
})
})