File size: 13,540 Bytes
213288b f128177 213288b d03cf9c 213288b d03cf9c 213288b f128177 213288b d03cf9c 213288b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""C4 dataset based on Common Crawl."""
import json
import os
import datasets
from .c4_utils import (
dedupe_urls,
filter_by_webtextlike,
get_clean_page_fn,
get_counter_inc_fn,
get_hashed_url_filter_fn,
is_language,
is_realnews_domain,
is_valid_length,
normalize_url,
remove_duplicate_text,
split_wet_file,
)
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
A colossal, cleaned version of Common Crawl's web crawl corpus.
Based on Common Crawl dataset: "https://commoncrawl.org"
Due to the overhead of cleaning the dataset, it is recommend you prepare it with
a distributed service like Cloud Dataflow. More info at
https://www.tensorflow.org/datasets/beam_datasets.
"""
_CITATION = """
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
"""
_VERSION = datasets.Version("2.3.0", "Deduplicate lines within a page.")
_DOWNLOAD_HOST = "https://commoncrawl.s3.amazonaws.com"
_WET_PATH_URL = "https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-{cc_version}/wet.paths.gz"
_REALNEWS_DOMAINS_URL = "https://raw.githubusercontent.com/rowanz/grover/38f7184bd87237ae2d3bc330b99f1e2e246f6d51/realnews/domain_to_allowed_subdomains.json"
_BADWORDS_URL = "https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/{lang}"
_CHECKSUMS_URL = "https://storage.googleapis.com/tfds-data/manual_checksums/c4.txt"
_OPENWEBTEXT_URLS_ZIP = "OpenWebText.zip"
_OPENWEBTEXT_URLS_URL = "https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ"
_OPENWEBTEXT_URLS_FILE_PATTERN = "OpenWebText/Version 1/URLs/*.txt"
_DEFAULT_CC_VERSIONS = ("2019-18",) # April 2019
_DEFAULT_WEBTEXTLIKE_CC_VERSIONS = ( # August 2018 - July 2019
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
)
class C4Config(datasets.BuilderConfig):
"""BuilderConfig for C4 dataset."""
def __init__(self, language, cc_versions=None, clean=True, realnewslike=False, webtextlike=False, **kwargs):
"""BuilderConfig for C4.
Args:
language: string, the language code, or "all" to disable language
filtering.
cc_versions: tuple(string), a collection of versions of Common Crawl to
use as the raw source text. Set to None to use defaults.
clean: bool, whether to clean the dataset for badwords, duplications, etc.
realnewslike: bool, whether to limit to news domains as compiled by
RealNews.
webtextlike: bool, whether to limit to WebText-like URLs.
**kwargs: keyword arguments forwarded to super.
"""
name_parts = [language]
if cc_versions:
name_parts.append("_".join(cc_versions))
if not clean:
name_parts.append("noclean")
if realnewslike:
name_parts.append("realnewslike")
if webtextlike:
name_parts.append("webtextlike")
name = ".".join(name_parts)
super(C4Config, self).__init__(name=name, version=_VERSION, **kwargs)
self.lang = language
self.cc_versions = cc_versions or (_DEFAULT_WEBTEXTLIKE_CC_VERSIONS if webtextlike else _DEFAULT_CC_VERSIONS)
self.clean = clean
self.realnewslike = realnewslike
self.webtextlike = webtextlike
class C4(datasets.BeamBasedBuilder):
"""C4 dataset based on Common Crawl."""
BUILDER_CONFIGS = [
C4Config(language="en", description="English C4 dataset."),
C4Config(
language="en",
clean=False,
description="Disables all cleaning (deduplication, removal based on bad words, " "etc.)",
),
C4Config(
language="en",
realnewslike=True,
description="Filters from the default config to only include content from the "
"domains used in the 'RealNews' dataset (Zellers et al., 2019).",
),
C4Config(
language="en",
webtextlike=True,
description="Filters from the default config to only include content from the "
"URLs in OpenWebText (https://github.com/jcpeterson/openwebtext).",
),
]
@property
def manual_download_instructions(self):
return """\
For the WebText-like config, you must manually download 'OpenWebText.zip'
(from https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ) and the Common Crawl
WET files from August 2018 to July 2019
(https://commoncrawl.org/the-data/get-started/) and place them in the
`data_dir`.
"""
def _info(self):
features = {
"text": datasets.Value("string"),
"url": datasets.Value("string"),
"content-type": datasets.Value("string"),
"content-length": datasets.Value("string"),
"timestamp": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
citation=_CITATION,
homepage="https://github.com/google-research/text-to-text-transfer-transformer#datasets",
)
def _split_generators(self, dl_manager, pipeline):
import apache_beam as beam
# We will automatically down the default CC version(s), but others need to
# be manually downloaded.
cc_versions = set(self.config.cc_versions)
auto_cc_versions = cc_versions & set(_DEFAULT_CC_VERSIONS)
manual_cc_versions = cc_versions - set(_DEFAULT_CC_VERSIONS)
files_to_download = {}
files_to_download["wet_path_urls"] = [
_WET_PATH_URL.format(cc_version=cc_version) for cc_version in auto_cc_versions
]
if self.config.clean:
files_to_download["badwords"] = _BADWORDS_URL.format(lang=self.config.lang)
if self.config.realnewslike:
files_to_download["realnews_domains"] = _REALNEWS_DOMAINS_URL
file_paths = dl_manager.download_and_extract(files_to_download)
if self.config.webtextlike:
owt_path = os.path.join(dl_manager.manual_dir, _OPENWEBTEXT_URLS_ZIP)
if not os.path.exists(owt_path):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes a file name {}. Manual download instructions: {})".format(
owt_path, _OPENWEBTEXT_URLS_ZIP, self.manual_download_instructions
)
)
file_paths["openwebtext_urls_zip"] = dl_manager.extract(owt_path)
wet_urls = []
for wet_path_url in file_paths["wet_path_urls"]:
with open(wet_path_url, "r", encoding="utf-8") as f:
wet_urls.extend(["%s/%s" % (_DOWNLOAD_HOST, line.strip()) for line in f])
file_paths["wet_urls"] = wet_urls
file_paths["wet_files"] = []
for cc_version in manual_cc_versions:
cc_dir = os.path.join(dl_manager.manual_dir, cc_version)
wet_files = beam.io.filesystems.FileSystems.match(os.path.join(cc_dir, "*.warc.wet.gz"))
if not os.path.exists(cc_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes the files {}. Manual download instructions: {})".format(
cc_dir, "*.warc.wet.gz", self.manual_download_instructions
)
)
logger.info("Adding %d WET files for manually downloaded version %s.", len(wet_files), cc_version)
file_paths["wet_files"].extend(wet_files)
page_content_pcollection = self._get_page_content(pipeline, file_paths, dl_manager)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs=dict(
split="train",
page_content=page_content_pcollection,
hashed_url_predicate=lambda x: x % 1000 != 0, # 99.9%
),
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs=dict(
split="validation",
page_content=page_content_pcollection,
hashed_url_predicate=lambda x: x % 1000 == 0, # 0.01%
),
),
]
def _get_page_content(self, pipeline, file_paths, dl_manager):
"""Build PCollection of un-split page content."""
import apache_beam as beam
wet_file_paths = pipeline | "create_wet_files" >> beam.Create(file_paths["wet_files"])
if "wet_urls" in file_paths:
def download_url(url, downloader, pipeline):
path = downloader.download(url)
if not pipeline.is_local():
path = downloader.ship_files_with_pipeline(path, pipeline)
return path
dl_wet_file_paths = (
pipeline
| "create_wet_urls" >> beam.Create(file_paths["wet_urls"])
| beam.Map(download_url, downloader=dl_manager, pipeline=pipeline)
)
wet_file_paths = (wet_file_paths, dl_wet_file_paths) | beam.Flatten()
# Parse WET files and filter by length.
# Output: url, text
page_content = wet_file_paths | beam.FlatMap(split_wet_file) | beam.Filter(is_valid_length)
# Optionally filter for RealNews domains.
# Output: url, text
if self.config.realnewslike:
with open(file_paths["realnews_domains"], "r", encoding="utf-8") as f:
realnews_domains = json.load(f)
page_content = page_content | beam.Filter(is_realnews_domain, realnews_domains)
# Normalize and deduplicate by URL.
# Output: url, text
page_content = (
page_content
| "normalize_url" >> beam.Map(normalize_url)
| "group_url" >> beam.GroupByKey()
| beam.Map(dedupe_urls)
)
# Optionally filter for WebText-like URLs.
# Output: url, text
if self.config.webtextlike:
webtextlike_urls = (
pipeline
| "read_webtextlike_urls"
>> beam.io.ReadFromText(
os.path.join(file_paths["openwebtext_urls_zip"], _OPENWEBTEXT_URLS_FILE_PATTERN)
)
| "add_dummy_page" >> beam.Map(lambda x: (x, ""))
| "normal_webtext_url" >> beam.Map(normalize_url)
)
page_content = (
{"text": page_content, "webtextlike_urls": webtextlike_urls}
| "group_webtextlike_urls" >> beam.CoGroupByKey()
| beam.FlatMap(filter_by_webtextlike)
)
# Optionally clean pages of badwords, boilerpolate text, and duplicate
# spans of sentences.
# Output: url, text
if self.config.clean:
with open(file_paths["badwords"], "r", encoding="utf-8") as f:
badwords = [line.strip() for line in f]
page_content = page_content | "clean_pages" >> beam.FlatMap(get_clean_page_fn(badwords))
page_content = remove_duplicate_text(page_content)
# Optionally filter out non-`language` pages. We do this after cleaning
# since it may change the predominate language.
if self.config.lang != "all":
page_content |= beam.Filter(is_language, language=self.config.lang)
return page_content
def _build_pcollection(self, unused_pipeline, split, page_content, hashed_url_predicate):
import apache_beam as beam
def _emit_examples(el):
get_counter_inc_fn(split)("examples")
_, features = el
return (
features["url"],
{
"url": features["url"],
"text": features["text"],
"content-type": features["content-type"],
"content-length": features["content-length"],
"timestamp": features["timestamp"],
},
)
return page_content | beam.Filter(get_hashed_url_filter_fn(hashed_url_predicate)) | beam.Map(_emit_examples)
|