|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: caption |
|
list: string |
|
- name: sentids |
|
list: string |
|
- name: split |
|
dtype: string |
|
- name: img_id |
|
dtype: string |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 4044387988 |
|
num_examples: 29000 |
|
- name: test |
|
num_bytes: 142155397 |
|
num_examples: 1000 |
|
- name: validation |
|
num_bytes: 140557396.192 |
|
num_examples: 1014 |
|
download_size: 4306311970 |
|
dataset_size: 4327100781.192 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: validation |
|
path: data/validation-* |
|
task_categories: |
|
- text-generation |
|
- image-to-text |
|
- text-to-image |
|
language: |
|
- pt |
|
pretty_name: Flickr30K Portuguese Translated |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# 🎉 Flickr30K Translated for Portuguese Image Captioning |
|
|
|
## 💾 Dataset Summary |
|
|
|
Flickr30K Portuguese Translated, a multimodal dataset for Portuguese image captioning with 31,014 images, each accompanied by five descriptive captions that have been |
|
generated by human annotators for every individual image. The original English captions were rendered into Portuguese |
|
through the utilization of the Google Translator API. |
|
|
|
The dataset is one of the results of work available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr. |
|
|
|
## 🧑💻 Hot to Get Started with the Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('laicsiifes/flickr30k-pt-br') |
|
``` |
|
|
|
## ✍️ Languages |
|
|
|
The images descriptions in the dataset are in Portuguese. |
|
|
|
## 🧱 Dataset Structure |
|
|
|
### 📝 Data Instances |
|
|
|
An example looks like below: |
|
|
|
``` |
|
{ |
|
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x333>, |
|
'caption':[ |
|
'Um cachorro preto carrega um brinquedo verde na boca enquanto caminha pela grama.', |
|
'Um cachorro preto molhado carrega um brinquedo verde pela grama.', |
|
'Um cachorro preto carregando algo pela grama.', |
|
'Um cachorro na grama com um item azul na boca.', |
|
'Um cachorro preto tem um brinquedo azul na boca.' |
|
], |
|
'sentids': ['450', '451', '452', '453', '454'], |
|
'split': 'train', |
|
'img_id': '90', |
|
'filename': '1026685415.jpg' |
|
} |
|
``` |
|
|
|
### 🗃️ Data Fields |
|
|
|
The data instances have the following fields: |
|
|
|
- `image`: a `PIL.Image.Image` object containing image. |
|
- `caption`: a `list` of `str` containing 5 captions related to image. |
|
- `sentids`: a `list` of `str` containing 5 ordered identification numbers related to each caption. |
|
- `split`: a `str` containing data split. It stores texts: `train`, `val` or `test`. |
|
- `img_id`: a `str` containing image identification number. |
|
- `filename`: a `str` containing name of image file. |
|
|
|
### ✂️ Data Splits |
|
|
|
The dataset is partitioned using the Karpathy splitting appoach for Image Captioning |
|
([Karpathy and Fei-Fei, 2015](https://arxiv.org/pdf/1412.2306)). |
|
|
|
|Split|Samples|Average Caption Length (Words)| |
|
|:-----------:|:-----:|:--------:| |
|
|Train|29,000|12.1 ± 5.1| |
|
|Validation|1,014|12.3 ± 5.3| |
|
|Test|1,000|12.2 ± 5.4| |
|
|Total|31,014|12.1 ± 5.2| |
|
|
|
|
|
## 📋 BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{bromonschenkel2024comparative, |
|
title = "A Comparative Evaluation of Transformer-Based Vision |
|
Encoder-Decoder Models for Brazilian Portuguese Image Captioning", |
|
author = "Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and |
|
Paix{\~a}o, Thiago M.", |
|
booktitle = "Proceedings...", |
|
organization = "Conference on Graphics, Patterns and Images, 37. (SIBGRAPI)", |
|
year = "2024" |
|
} |
|
``` |