--- dataset_info: features: - name: image dtype: image - name: caption list: string - name: sentids list: string - name: split dtype: string - name: img_id dtype: string - name: filename dtype: string splits: - name: train num_bytes: 4044387988 num_examples: 29000 - name: test num_bytes: 142155397 num_examples: 1000 - name: validation num_bytes: 140557396.192 num_examples: 1014 download_size: 4306311970 dataset_size: 4327100781.192 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* task_categories: - text-generation - image-to-text - text-to-image language: - pt pretty_name: Flickr30K Portuguese Translated size_categories: - 10K, 'caption':[ 'Um cachorro preto carrega um brinquedo verde na boca enquanto caminha pela grama.', 'Um cachorro preto molhado carrega um brinquedo verde pela grama.', 'Um cachorro preto carregando algo pela grama.', 'Um cachorro na grama com um item azul na boca.', 'Um cachorro preto tem um brinquedo azul na boca.' ], 'sentids': ['450', '451', '452', '453', '454'], 'split': 'train', 'img_id': '90', 'filename': '1026685415.jpg' } ``` ### 🗃️ Data Fields The data instances have the following fields: - `image`: a `PIL.Image.Image` object containing image. - `caption`: a `list` of `str` containing 5 captions related to image. - `sentids`: a `list` of `str` containing 5 ordered identification numbers related to each caption. - `split`: a `str` containing data split. It stores texts: `train`, `val` or `test`. - `img_id`: a `str` containing image identification number. - `filename`: a `str` containing name of image file. ### ✂️ Data Splits The dataset is partitioned using the Karpathy splitting appoach for Image Captioning ([Karpathy and Fei-Fei, 2015](https://arxiv.org/pdf/1412.2306)). |Split|Samples|Average Caption Length (Words)| |:-----------:|:-----:|:--------:| |Train|29,000|12.1 ± 5.1| |Validation|1,014|12.3 ± 5.3| |Test|1,000|12.2 ± 5.4| |Total|31,014|12.1 ± 5.2| ## 📋 BibTeX entry and citation info ```bibtex @inproceedings{bromonschenkel2024comparative, title = "A Comparative Evaluation of Transformer-Based Vision Encoder-Decoder Models for Brazilian Portuguese Image Captioning", author = "Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and Paix{\~a}o, Thiago M.", booktitle = "Proceedings...", organization = "Conference on Graphics, Patterns and Images, 37. (SIBGRAPI)", year = "2024" } ```