Dataset Viewer
url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 46
51
| id
int64 599M
1.84B
| node_id
stringlengths 18
32
| number
int64 1
6.12k
| title
stringlengths 1
290
| user
dict | labels
listlengths 0
4
| state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
listlengths 0
4
| milestone
dict | comments
sequencelengths 0
30
| created_at
unknown | updated_at
unknown | closed_at
unknown | author_association
stringclasses 3
values | active_lock_reason
float64 | draft
float64 0
1
⌀ | pull_request
dict | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
float64 | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6117 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6117/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6117/comments | https://api.github.com/repos/huggingface/datasets/issues/6117/events | https://github.com/huggingface/datasets/pull/6117 | 1,835,213,848 | PR_kwDODunzps5XHktw | 6,117 | Set dev version | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6117). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012516 / 0.011353 (0.001163) | 0.004725 / 0.011008 (-0.006283) | 0.112245 / 0.038508 (0.073736) | 0.079146 / 0.023109 (0.056037) | 0.386415 / 0.275898 (0.110517) | 0.420441 / 0.323480 (0.096961) | 0.005682 / 0.007986 (-0.002304) | 0.004169 / 0.004328 (-0.000160) | 0.077847 / 0.004250 (0.073597) | 0.055763 / 0.037052 (0.018711) | 0.385529 / 0.258489 (0.127040) | 0.422711 / 0.293841 (0.128870) | 0.047212 / 0.128546 (-0.081334) | 0.013711 / 0.075646 (-0.061935) | 0.342856 / 0.419271 (-0.076416) | 0.066788 / 0.043533 (0.023255) | 0.380728 / 0.255139 (0.125589) | 0.416241 / 0.283200 (0.133041) | 0.034676 / 0.141683 (-0.107007) | 1.679661 / 1.452155 (0.227506) | 1.838014 / 1.492716 (0.345297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219556 / 0.018006 (0.201550) | 0.524728 / 0.000490 (0.524238) | 0.005045 / 0.000200 (0.004845) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025475 / 0.037411 (-0.011936) | 0.085937 / 0.014526 (0.071412) | 0.099245 / 0.176557 (-0.077311) | 0.158995 / 0.737135 (-0.578141) | 0.101504 / 0.296338 (-0.194835) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582200 / 0.215209 (0.366991) | 5.794340 / 2.077655 (3.716685) | 2.473635 / 1.504120 (0.969515) | 2.168135 / 1.541195 (0.626941) | 2.215886 / 1.468490 (0.747396) | 0.855599 / 4.584777 (-3.729178) | 5.003067 / 3.745712 (1.257354) | 4.503566 / 5.269862 (-0.766295) | 2.912248 / 4.565676 (-1.653428) | 0.103267 / 0.424275 (-0.321008) | 0.012114 / 0.007607 (0.004507) | 0.712240 / 0.226044 (0.486196) | 7.131946 / 2.268929 (4.863017) | 3.280052 / 55.444624 (-52.164573) | 2.583472 / 6.876477 (-4.293004) | 2.820758 / 2.142072 (0.678686) | 1.132097 / 4.805227 (-3.673131) | 0.232191 / 6.500664 (-6.268473) | 0.082966 / 0.075469 (0.007497) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.581125 / 1.841788 (-0.260662) | 22.723878 / 8.074308 (14.649570) | 19.969347 / 10.191392 (9.777955) | 0.234365 / 0.680424 (-0.446059) | 0.030245 / 0.534201 (-0.503956) | 0.470843 / 0.579283 (-0.108440) | 0.558069 / 0.434364 (0.123705) | 0.534878 / 0.540337 (-0.005460) | 0.801025 / 1.386936 (-0.585911) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008524 / 0.011353 (-0.002829) | 0.005083 / 0.011008 (-0.005925) | 0.078054 / 0.038508 (0.039546) | 0.082025 / 0.023109 (0.058915) | 0.458027 / 0.275898 (0.182129) | 0.498232 / 0.323480 (0.174752) | 0.005938 / 0.007986 (-0.002048) | 0.003776 / 0.004328 (-0.000553) | 0.080413 / 0.004250 (0.076163) | 0.060485 / 0.037052 (0.023433) | 0.462816 / 0.258489 (0.204327) | 0.513970 / 0.293841 (0.220129) | 0.047574 / 0.128546 (-0.080973) | 0.013424 / 0.075646 (-0.062222) | 0.087707 / 0.419271 (-0.331565) | 0.065007 / 0.043533 (0.021474) | 0.465844 / 0.255139 (0.210705) | 0.498474 / 0.283200 (0.215274) | 0.033518 / 0.141683 (-0.108164) | 1.737507 / 1.452155 (0.285352) | 1.848291 / 1.492716 (0.355574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316710 / 0.018006 (0.298703) | 0.504415 / 0.000490 (0.503925) | 0.042128 / 0.000200 (0.041928) | 0.000171 / 0.000054 (0.000117) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032097 / 0.037411 (-0.005314) | 0.099371 / 0.014526 (0.084845) | 0.109311 / 0.176557 (-0.067246) | 0.177373 / 0.737135 (-0.559762) | 0.110753 / 0.296338 (-0.185585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.688060 / 0.215209 (0.472851) | 6.255219 / 2.077655 (4.177564) | 2.696845 / 1.504120 (1.192725) | 2.395424 / 1.541195 (0.854230) | 2.414870 / 1.468490 (0.946380) | 0.865704 / 4.584777 (-3.719073) | 5.086828 / 3.745712 (1.341116) | 4.648107 / 5.269862 (-0.621754) | 3.091119 / 4.565676 (-1.474558) | 0.101787 / 0.424275 (-0.322489) | 0.008829 / 0.007607 (0.001222) | 0.772398 / 0.226044 (0.546354) | 7.700366 / 2.268929 (5.431438) | 3.608632 / 55.444624 (-51.835992) | 2.923309 / 6.876477 (-3.953168) | 2.952141 / 2.142072 (0.810069) | 1.093006 / 4.805227 (-3.712221) | 0.224363 / 6.500664 (-6.276301) | 0.074927 / 0.075469 (-0.000542) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.638414 / 1.841788 (-0.203374) | 23.486781 / 8.074308 (15.412473) | 21.129104 / 10.191392 (10.937712) | 0.259955 / 0.680424 (-0.420469) | 0.027305 / 0.534201 (-0.506895) | 0.464448 / 0.579283 (-0.114835) | 0.553737 / 0.434364 (0.119373) | 0.571318 / 0.540337 (0.030981) | 0.772917 / 1.386936 (-0.614019) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009093 / 0.011353 (-0.002260) | 0.005283 / 0.011008 (-0.005725) | 0.112299 / 0.038508 (0.073791) | 0.081341 / 0.023109 (0.058232) | 0.363799 / 0.275898 (0.087901) | 0.409261 / 0.323480 (0.085781) | 0.006400 / 0.007986 (-0.001586) | 0.003965 / 0.004328 (-0.000363) | 0.074389 / 0.004250 (0.070139) | 0.060654 / 0.037052 (0.023602) | 0.391046 / 0.258489 (0.132557) | 0.430514 / 0.293841 (0.136673) | 0.054900 / 0.128546 (-0.073646) | 0.017972 / 0.075646 (-0.057675) | 0.410875 / 0.419271 (-0.008396) | 0.067405 / 0.043533 (0.023873) | 0.371468 / 0.255139 (0.116329) | 0.435061 / 0.283200 (0.151861) | 0.038063 / 0.141683 (-0.103620) | 1.733509 / 1.452155 (0.281354) | 1.833899 / 1.492716 (0.341182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243230 / 0.018006 (0.225224) | 0.605636 / 0.000490 (0.605146) | 0.004890 / 0.000200 (0.004690) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027624 / 0.037411 (-0.009787) | 0.084799 / 0.014526 (0.070273) | 0.104405 / 0.176557 (-0.072152) | 0.165383 / 0.737135 (-0.571752) | 0.102083 / 0.296338 (-0.194255) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578334 / 0.215209 (0.363125) | 5.369520 / 2.077655 (3.291866) | 2.294174 / 1.504120 (0.790055) | 2.054195 / 1.541195 (0.513000) | 2.007304 / 1.468490 (0.538814) | 0.839283 / 4.584777 (-3.745494) | 5.262288 / 3.745712 (1.516576) | 4.363346 / 5.269862 (-0.906516) | 2.854903 / 4.565676 (-1.710773) | 0.096975 / 0.424275 (-0.327300) | 0.008237 / 0.007607 (0.000630) | 0.646746 / 0.226044 (0.420702) | 6.250621 / 2.268929 (3.981693) | 2.900377 / 55.444624 (-52.544247) | 2.283238 / 6.876477 (-4.593239) | 2.443785 / 2.142072 (0.301713) | 0.991719 / 4.805227 (-3.813508) | 0.189755 / 6.500664 (-6.310909) | 0.067906 / 0.075469 (-0.007563) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.515563 / 1.841788 (-0.326225) | 21.956499 / 8.074308 (13.882191) | 19.161750 / 10.191392 (8.970358) | 0.238199 / 0.680424 (-0.442225) | 0.026771 / 0.534201 (-0.507430) | 0.450195 / 0.579283 (-0.129088) | 0.585168 / 0.434364 (0.150804) | 0.522945 / 0.540337 (-0.017393) | 0.776244 / 1.386936 (-0.610693) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007997 / 0.011353 (-0.003356) | 0.005021 / 0.011008 (-0.005988) | 0.087308 / 0.038508 (0.048800) | 0.077760 / 0.023109 (0.054650) | 0.425313 / 0.275898 (0.149415) | 0.451470 / 0.323480 (0.127990) | 0.006848 / 0.007986 (-0.001137) | 0.004812 / 0.004328 (0.000484) | 0.071198 / 0.004250 (0.066947) | 0.058325 / 0.037052 (0.021273) | 0.427411 / 0.258489 (0.168922) | 0.466069 / 0.293841 (0.172228) | 0.048686 / 0.128546 (-0.079861) | 0.011841 / 0.075646 (-0.063806) | 0.086225 / 0.419271 (-0.333047) | 0.060500 / 0.043533 (0.016967) | 0.435580 / 0.255139 (0.180441) | 0.456919 / 0.283200 (0.173719) | 0.035094 / 0.141683 (-0.106588) | 1.582805 / 1.452155 (0.130650) | 1.717838 / 1.492716 (0.225122) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283967 / 0.018006 (0.265960) | 0.517496 / 0.000490 (0.517006) | 0.014747 / 0.000200 (0.014547) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027870 / 0.037411 (-0.009541) | 0.083835 / 0.014526 (0.069309) | 0.099157 / 0.176557 (-0.077400) | 0.173210 / 0.737135 (-0.563925) | 0.094212 / 0.296338 (-0.202127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.535720 / 0.215209 (0.320511) | 5.273730 / 2.077655 (3.196075) | 2.422560 / 1.504120 (0.918440) | 2.131416 / 1.541195 (0.590222) | 2.192000 / 1.468490 (0.723510) | 0.708469 / 4.584777 (-3.876308) | 4.758092 / 3.745712 (1.012380) | 3.940729 / 5.269862 (-1.329133) | 2.553093 / 4.565676 (-2.012583) | 0.084895 / 0.424275 (-0.339380) | 0.008730 / 0.007607 (0.001123) | 0.646975 / 0.226044 (0.420930) | 6.294811 / 2.268929 (4.025883) | 3.293964 / 55.444624 (-52.150660) | 2.568985 / 6.876477 (-4.307492) | 2.743786 / 2.142072 (0.601713) | 0.899733 / 4.805227 (-3.905494) | 0.193484 / 6.500664 (-6.307181) | 0.070012 / 0.075469 (-0.005457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502255 / 1.841788 (-0.339532) | 20.690234 / 8.074308 (12.615926) | 18.375791 / 10.191392 (8.184399) | 0.200135 / 0.680424 (-0.480289) | 0.029434 / 0.534201 (-0.504767) | 0.477267 / 0.579283 (-0.102016) | 0.566869 / 0.434364 (0.132505) | 0.543756 / 0.540337 (0.003418) | 0.700476 / 1.386936 (-0.686460) |\n\n</details>\n</details>\n\n\n"
] | "2023-08-03T14:46:04" | "2023-08-03T14:56:59" | "2023-08-03T14:46:18" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6117.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6117",
"merged_at": "2023-08-03T14:46:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6117.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6117"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6117/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6117/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6116 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6116/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6116/comments | https://api.github.com/repos/huggingface/datasets/issues/6116/events | https://github.com/huggingface/datasets/issues/6116 | 1,835,098,484 | I_kwDODunzps5tYWF0 | 6,116 | [Docs] The "Process" how-to guide lacks description of `select_columns` function | {
"avatar_url": "https://avatars.githubusercontent.com/u/18213435?v=4",
"events_url": "https://api.github.com/users/unifyh/events{/privacy}",
"followers_url": "https://api.github.com/users/unifyh/followers",
"following_url": "https://api.github.com/users/unifyh/following{/other_user}",
"gists_url": "https://api.github.com/users/unifyh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/unifyh",
"id": 18213435,
"login": "unifyh",
"node_id": "MDQ6VXNlcjE4MjEzNDM1",
"organizations_url": "https://api.github.com/users/unifyh/orgs",
"received_events_url": "https://api.github.com/users/unifyh/received_events",
"repos_url": "https://api.github.com/users/unifyh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/unifyh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/unifyh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/unifyh"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"Great idea, feel free to open a PR! :)"
] | "2023-08-03T13:45:10" | "2023-08-03T17:40:58" | null | NONE | null | null | null | ### Feature request
The [how to process dataset guide](https://huggingface.co/docs/datasets/main/en/process) currently does not mention the [`select_columns`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.select_columns) function. It would be nice to include it in the guide.
### Motivation
This function is a commonly requested feature (see this [forum thread](https://discuss.huggingface.co/t/how-to-create-a-new-dataset-from-another-dataset-and-select-specific-columns-and-the-data-along-with-the-column/15120) and #5468 #5474). However, it has not been included in the guide since its implementation by PR #5480.
Mentioning it in the guide would help future users discover this added feature.
### Your contribution
I could submit a PR to add a brief description of the function to said guide. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6116/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6116/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6115 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6115/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6115/comments | https://api.github.com/repos/huggingface/datasets/issues/6115/events | https://github.com/huggingface/datasets/pull/6115 | 1,834,765,485 | PR_kwDODunzps5XGChP | 6,115 | Release: 2.14.3 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007578 / 0.011353 (-0.003775) | 0.004271 / 0.011008 (-0.006738) | 0.086607 / 0.038508 (0.048098) | 0.063209 / 0.023109 (0.040099) | 0.351724 / 0.275898 (0.075826) | 0.399261 / 0.323480 (0.075781) | 0.004767 / 0.007986 (-0.003219) | 0.003487 / 0.004328 (-0.000842) | 0.071483 / 0.004250 (0.067233) | 0.051281 / 0.037052 (0.014229) | 0.387726 / 0.258489 (0.129237) | 0.408446 / 0.293841 (0.114605) | 0.041189 / 0.128546 (-0.087357) | 0.012446 / 0.075646 (-0.063200) | 0.331147 / 0.419271 (-0.088124) | 0.056721 / 0.043533 (0.013188) | 0.361306 / 0.255139 (0.106167) | 0.409651 / 0.283200 (0.126451) | 0.035485 / 0.141683 (-0.106198) | 1.461391 / 1.452155 (0.009236) | 1.554820 / 1.492716 (0.062104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237119 / 0.018006 (0.219113) | 0.518731 / 0.000490 (0.518241) | 0.004192 / 0.000200 (0.003992) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024912 / 0.037411 (-0.012499) | 0.089420 / 0.014526 (0.074894) | 0.091209 / 0.176557 (-0.085347) | 0.152580 / 0.737135 (-0.584555) | 0.089660 / 0.296338 (-0.206678) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515223 / 0.215209 (0.300014) | 5.328359 / 2.077655 (3.250705) | 1.974326 / 1.504120 (0.470206) | 1.665216 / 1.541195 (0.124021) | 1.736040 / 1.468490 (0.267550) | 0.734746 / 4.584777 (-3.850031) | 4.186613 / 3.745712 (0.440901) | 3.535760 / 5.269862 (-1.734102) | 2.333247 / 4.565676 (-2.232429) | 0.071845 / 0.424275 (-0.352430) | 0.006147 / 0.007607 (-0.001460) | 0.546649 / 0.226044 (0.320605) | 5.452281 / 2.268929 (3.183353) | 2.512984 / 55.444624 (-52.931640) | 2.104210 / 6.876477 (-4.772267) | 2.409251 / 2.142072 (0.267178) | 0.822797 / 4.805227 (-3.982430) | 0.166648 / 6.500664 (-6.334016) | 0.056350 / 0.075469 (-0.019119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397798 / 1.841788 (-0.443989) | 20.549399 / 8.074308 (12.475091) | 19.118168 / 10.191392 (8.926776) | 0.216361 / 0.680424 (-0.464063) | 0.027064 / 0.534201 (-0.507136) | 0.410762 / 0.579283 (-0.168521) | 0.559225 / 0.434364 (0.124861) | 0.468028 / 0.540337 (-0.072309) | 0.691520 / 1.386936 (-0.695416) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004890) | 0.003879 / 0.011008 (-0.007130) | 0.058723 / 0.038508 (0.020215) | 0.057202 / 0.023109 (0.034092) | 0.344397 / 0.275898 (0.068499) | 0.360388 / 0.323480 (0.036908) | 0.005502 / 0.007986 (-0.002483) | 0.004101 / 0.004328 (-0.000227) | 0.058168 / 0.004250 (0.053917) | 0.059112 / 0.037052 (0.022060) | 0.362206 / 0.258489 (0.103717) | 0.386444 / 0.293841 (0.092603) | 0.036613 / 0.128546 (-0.091934) | 0.010482 / 0.075646 (-0.065165) | 0.065850 / 0.419271 (-0.353421) | 0.046528 / 0.043533 (0.002995) | 0.349568 / 0.255139 (0.094429) | 0.360181 / 0.283200 (0.076981) | 0.029030 / 0.141683 (-0.112653) | 1.314569 / 1.452155 (-0.137586) | 1.422393 / 1.492716 (-0.070324) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281554 / 0.018006 (0.263548) | 0.608018 / 0.000490 (0.607528) | 0.004568 / 0.000200 (0.004368) | 0.000182 / 0.000054 (0.000127) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023515 / 0.037411 (-0.013896) | 0.072994 / 0.014526 (0.058468) | 0.080688 / 0.176557 (-0.095868) | 0.125904 / 0.737135 (-0.611232) | 0.085457 / 0.296338 (-0.210882) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471530 / 0.215209 (0.256321) | 4.796197 / 2.077655 (2.718542) | 2.189181 / 1.504120 (0.685061) | 1.886649 / 1.541195 (0.345454) | 1.871067 / 1.468490 (0.402577) | 0.661043 / 4.584777 (-3.923734) | 4.344027 / 3.745712 (0.598315) | 3.656967 / 5.269862 (-1.612895) | 2.286033 / 4.565676 (-2.279644) | 0.079146 / 0.424275 (-0.345129) | 0.006840 / 0.007607 (-0.000767) | 0.588750 / 0.226044 (0.362706) | 6.301286 / 2.268929 (4.032357) | 3.074702 / 55.444624 (-52.369923) | 2.398739 / 6.876477 (-4.477738) | 2.555057 / 2.142072 (0.412985) | 0.874189 / 4.805227 (-3.931038) | 0.191423 / 6.500664 (-6.309241) | 0.061227 / 0.075469 (-0.014242) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.472763 / 1.841788 (-0.369024) | 19.441304 / 8.074308 (11.366996) | 15.974276 / 10.191392 (5.782884) | 0.172503 / 0.680424 (-0.507921) | 0.027016 / 0.534201 (-0.507185) | 0.356085 / 0.579283 (-0.223198) | 0.473251 / 0.434364 (0.038887) | 0.427949 / 0.540337 (-0.112388) | 0.588924 / 1.386936 (-0.798013) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006166 / 0.011353 (-0.005187) | 0.003558 / 0.011008 (-0.007450) | 0.080576 / 0.038508 (0.042068) | 0.066542 / 0.023109 (0.043432) | 0.323997 / 0.275898 (0.048099) | 0.369828 / 0.323480 (0.046348) | 0.004896 / 0.007986 (-0.003090) | 0.002909 / 0.004328 (-0.001419) | 0.062553 / 0.004250 (0.058302) | 0.049795 / 0.037052 (0.012742) | 0.321369 / 0.258489 (0.062880) | 0.422860 / 0.293841 (0.129019) | 0.027394 / 0.128546 (-0.101152) | 0.007954 / 0.075646 (-0.067693) | 0.264122 / 0.419271 (-0.155149) | 0.044881 / 0.043533 (0.001349) | 0.316702 / 0.255139 (0.061563) | 0.374718 / 0.283200 (0.091518) | 0.021728 / 0.141683 (-0.119955) | 1.394456 / 1.452155 (-0.057699) | 1.474936 / 1.492716 (-0.017780) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191902 / 0.018006 (0.173896) | 0.430468 / 0.000490 (0.429979) | 0.003790 / 0.000200 (0.003590) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024974 / 0.037411 (-0.012438) | 0.073053 / 0.014526 (0.058527) | 0.083801 / 0.176557 (-0.092756) | 0.143457 / 0.737135 (-0.593678) | 0.085099 / 0.296338 (-0.211240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428411 / 0.215209 (0.213202) | 4.278077 / 2.077655 (2.200422) | 2.230039 / 1.504120 (0.725919) | 2.057191 / 1.541195 (0.515996) | 2.120109 / 1.468490 (0.651619) | 0.495242 / 4.584777 (-4.089535) | 3.031299 / 3.745712 (-0.714413) | 2.802685 / 5.269862 (-2.467176) | 1.839828 / 4.565676 (-2.725849) | 0.056875 / 0.424275 (-0.367401) | 0.006446 / 0.007607 (-0.001161) | 0.498958 / 0.226044 (0.272913) | 4.980440 / 2.268929 (2.711511) | 2.659659 / 55.444624 (-52.784965) | 2.315174 / 6.876477 (-4.561303) | 2.475920 / 2.142072 (0.333848) | 0.586946 / 4.805227 (-4.218282) | 0.124291 / 6.500664 (-6.376373) | 0.060701 / 0.075469 (-0.014768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245062 / 1.841788 (-0.596725) | 18.201444 / 8.074308 (10.127136) | 13.723271 / 10.191392 (3.531879) | 0.130203 / 0.680424 (-0.550221) | 0.016773 / 0.534201 (-0.517428) | 0.332909 / 0.579283 (-0.246374) | 0.347469 / 0.434364 (-0.086895) | 0.381364 / 0.540337 (-0.158973) | 0.541723 / 1.386936 (-0.845213) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005934 / 0.011353 (-0.005419) | 0.003573 / 0.011008 (-0.007435) | 0.062195 / 0.038508 (0.023687) | 0.059026 / 0.023109 (0.035917) | 0.413993 / 0.275898 (0.138095) | 0.459552 / 0.323480 (0.136072) | 0.004610 / 0.007986 (-0.003376) | 0.002907 / 0.004328 (-0.001421) | 0.062983 / 0.004250 (0.058733) | 0.047797 / 0.037052 (0.010745) | 0.415461 / 0.258489 (0.156972) | 0.417424 / 0.293841 (0.123583) | 0.027098 / 0.128546 (-0.101449) | 0.008106 / 0.075646 (-0.067540) | 0.067600 / 0.419271 (-0.351672) | 0.041432 / 0.043533 (-0.002101) | 0.407861 / 0.255139 (0.152722) | 0.430774 / 0.283200 (0.147575) | 0.020738 / 0.141683 (-0.120945) | 1.435127 / 1.452155 (-0.017028) | 1.486961 / 1.492716 (-0.005755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231174 / 0.018006 (0.213168) | 0.421208 / 0.000490 (0.420718) | 0.005411 / 0.000200 (0.005211) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025362 / 0.037411 (-0.012049) | 0.078534 / 0.014526 (0.064008) | 0.085304 / 0.176557 (-0.091252) | 0.139048 / 0.737135 (-0.598087) | 0.087015 / 0.296338 (-0.209323) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448506 / 0.215209 (0.233297) | 4.486694 / 2.077655 (2.409039) | 2.488022 / 1.504120 (0.983902) | 2.325321 / 1.541195 (0.784126) | 2.381311 / 1.468490 (0.912821) | 0.502102 / 4.584777 (-4.082675) | 3.018326 / 3.745712 (-0.727386) | 2.824922 / 5.269862 (-2.444940) | 1.857414 / 4.565676 (-2.708263) | 0.057514 / 0.424275 (-0.366761) | 0.006829 / 0.007607 (-0.000779) | 0.521939 / 0.226044 (0.295895) | 5.224393 / 2.268929 (2.955465) | 2.933132 / 55.444624 (-52.511492) | 2.661187 / 6.876477 (-4.215290) | 2.781950 / 2.142072 (0.639878) | 0.592927 / 4.805227 (-4.212300) | 0.126685 / 6.500664 (-6.373979) | 0.064188 / 0.075469 (-0.011281) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351107 / 1.841788 (-0.490681) | 18.344453 / 8.074308 (10.270145) | 13.838788 / 10.191392 (3.647396) | 0.157881 / 0.680424 (-0.522543) | 0.016636 / 0.534201 (-0.517565) | 0.331597 / 0.579283 (-0.247686) | 0.345573 / 0.434364 (-0.088791) | 0.397361 / 0.540337 (-0.142976) | 0.534289 / 1.386936 (-0.852647) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006399 / 0.011353 (-0.004954) | 0.003872 / 0.011008 (-0.007136) | 0.083722 / 0.038508 (0.045214) | 0.068845 / 0.023109 (0.045736) | 0.329112 / 0.275898 (0.053214) | 0.343295 / 0.323480 (0.019815) | 0.005137 / 0.007986 (-0.002849) | 0.003303 / 0.004328 (-0.001026) | 0.064495 / 0.004250 (0.060245) | 0.051448 / 0.037052 (0.014395) | 0.322554 / 0.258489 (0.064065) | 0.361934 / 0.293841 (0.068093) | 0.030821 / 0.128546 (-0.097726) | 0.008482 / 0.075646 (-0.067164) | 0.288136 / 0.419271 (-0.131135) | 0.051935 / 0.043533 (0.008402) | 0.308283 / 0.255139 (0.053144) | 0.343421 / 0.283200 (0.060221) | 0.023639 / 0.141683 (-0.118044) | 1.485442 / 1.452155 (0.033288) | 1.533282 / 1.492716 (0.040565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218163 / 0.018006 (0.200157) | 0.464473 / 0.000490 (0.463983) | 0.003097 / 0.000200 (0.002897) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028650 / 0.037411 (-0.008761) | 0.083295 / 0.014526 (0.068769) | 0.096468 / 0.176557 (-0.080088) | 0.152086 / 0.737135 (-0.585050) | 0.102586 / 0.296338 (-0.193752) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393038 / 0.215209 (0.177829) | 3.925514 / 2.077655 (1.847859) | 1.938419 / 1.504120 (0.434300) | 1.760265 / 1.541195 (0.219071) | 1.810024 / 1.468490 (0.341534) | 0.486232 / 4.584777 (-4.098545) | 3.618747 / 3.745712 (-0.126965) | 3.206950 / 5.269862 (-2.062912) | 1.999240 / 4.565676 (-2.566436) | 0.056986 / 0.424275 (-0.367289) | 0.007193 / 0.007607 (-0.000415) | 0.469313 / 0.226044 (0.243269) | 4.688670 / 2.268929 (2.419741) | 2.400332 / 55.444624 (-53.044292) | 2.074197 / 6.876477 (-4.802279) | 2.290823 / 2.142072 (0.148751) | 0.582339 / 4.805227 (-4.222888) | 0.134127 / 6.500664 (-6.366537) | 0.061061 / 0.075469 (-0.014408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272782 / 1.841788 (-0.569006) | 19.463375 / 8.074308 (11.389067) | 14.306819 / 10.191392 (4.115427) | 0.164608 / 0.680424 (-0.515816) | 0.018626 / 0.534201 (-0.515575) | 0.395225 / 0.579283 (-0.184058) | 0.408984 / 0.434364 (-0.025380) | 0.463364 / 0.540337 (-0.076974) | 0.630425 / 1.386936 (-0.756511) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006465 / 0.011353 (-0.004888) | 0.003975 / 0.011008 (-0.007033) | 0.063643 / 0.038508 (0.025134) | 0.075214 / 0.023109 (0.052105) | 0.361734 / 0.275898 (0.085836) | 0.396664 / 0.323480 (0.073184) | 0.005251 / 0.007986 (-0.002735) | 0.003249 / 0.004328 (-0.001080) | 0.063841 / 0.004250 (0.059591) | 0.054504 / 0.037052 (0.017451) | 0.374791 / 0.258489 (0.116302) | 0.399205 / 0.293841 (0.105364) | 0.031355 / 0.128546 (-0.097192) | 0.008483 / 0.075646 (-0.067163) | 0.070234 / 0.419271 (-0.349037) | 0.048336 / 0.043533 (0.004803) | 0.373484 / 0.255139 (0.118345) | 0.382174 / 0.283200 (0.098974) | 0.022560 / 0.141683 (-0.119123) | 1.449799 / 1.452155 (-0.002355) | 1.525255 / 1.492716 (0.032539) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228350 / 0.018006 (0.210343) | 0.444344 / 0.000490 (0.443855) | 0.003699 / 0.000200 (0.003499) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030681 / 0.037411 (-0.006731) | 0.087340 / 0.014526 (0.072814) | 0.098636 / 0.176557 (-0.077920) | 0.151665 / 0.737135 (-0.585471) | 0.100840 / 0.296338 (-0.195498) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417857 / 0.215209 (0.202648) | 4.168407 / 2.077655 (2.090752) | 2.201758 / 1.504120 (0.697638) | 1.997834 / 1.541195 (0.456639) | 2.127693 / 1.468490 (0.659202) | 0.486429 / 4.584777 (-4.098348) | 3.676335 / 3.745712 (-0.069378) | 3.226268 / 5.269862 (-2.043594) | 2.027255 / 4.565676 (-2.538422) | 0.056759 / 0.424275 (-0.367516) | 0.007628 / 0.007607 (0.000021) | 0.500482 / 0.226044 (0.274438) | 4.996236 / 2.268929 (2.727307) | 2.628884 / 55.444624 (-52.815740) | 2.347611 / 6.876477 (-4.528866) | 2.551328 / 2.142072 (0.409255) | 0.582449 / 4.805227 (-4.222778) | 0.132844 / 6.500664 (-6.367821) | 0.061791 / 0.075469 (-0.013678) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.373718 / 1.841788 (-0.468070) | 19.921217 / 8.074308 (11.846909) | 14.209642 / 10.191392 (4.018250) | 0.185334 / 0.680424 (-0.495090) | 0.018228 / 0.534201 (-0.515973) | 0.395549 / 0.579283 (-0.183734) | 0.404446 / 0.434364 (-0.029918) | 0.472456 / 0.540337 (-0.067882) | 0.622739 / 1.386936 (-0.764197) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006007 / 0.011353 (-0.005346) | 0.003588 / 0.011008 (-0.007420) | 0.080334 / 0.038508 (0.041826) | 0.058932 / 0.023109 (0.035823) | 0.404613 / 0.275898 (0.128715) | 0.438377 / 0.323480 (0.114897) | 0.003468 / 0.007986 (-0.004518) | 0.003702 / 0.004328 (-0.000627) | 0.062936 / 0.004250 (0.058686) | 0.047987 / 0.037052 (0.010934) | 0.411409 / 0.258489 (0.152920) | 0.450244 / 0.293841 (0.156403) | 0.027007 / 0.128546 (-0.101539) | 0.007932 / 0.075646 (-0.067714) | 0.261390 / 0.419271 (-0.157882) | 0.044992 / 0.043533 (0.001459) | 0.409730 / 0.255139 (0.154591) | 0.433331 / 0.283200 (0.150131) | 0.020446 / 0.141683 (-0.121237) | 1.425418 / 1.452155 (-0.026736) | 1.479242 / 1.492716 (-0.013475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187375 / 0.018006 (0.169368) | 0.428532 / 0.000490 (0.428043) | 0.003406 / 0.000200 (0.003206) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024390 / 0.037411 (-0.013022) | 0.072571 / 0.014526 (0.058045) | 0.083513 / 0.176557 (-0.093044) | 0.144395 / 0.737135 (-0.592741) | 0.084813 / 0.296338 (-0.211526) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409176 / 0.215209 (0.193967) | 4.078082 / 2.077655 (2.000428) | 1.913596 / 1.504120 (0.409476) | 1.718470 / 1.541195 (0.177275) | 1.753106 / 1.468490 (0.284616) | 0.494167 / 4.584777 (-4.090610) | 3.029531 / 3.745712 (-0.716181) | 2.807331 / 5.269862 (-2.462531) | 1.839471 / 4.565676 (-2.726206) | 0.057169 / 0.424275 (-0.367106) | 0.006433 / 0.007607 (-0.001175) | 0.482666 / 0.226044 (0.256621) | 4.817601 / 2.268929 (2.548673) | 2.449967 / 55.444624 (-52.994658) | 2.113891 / 6.876477 (-4.762586) | 2.399293 / 2.142072 (0.257221) | 0.578903 / 4.805227 (-4.226324) | 0.124306 / 6.500664 (-6.376358) | 0.061572 / 0.075469 (-0.013897) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254692 / 1.841788 (-0.587096) | 18.414049 / 8.074308 (10.339741) | 13.992059 / 10.191392 (3.800667) | 0.146671 / 0.680424 (-0.533753) | 0.016925 / 0.534201 (-0.517275) | 0.333124 / 0.579283 (-0.246159) | 0.348007 / 0.434364 (-0.086357) | 0.378519 / 0.540337 (-0.161819) | 0.532540 / 1.386936 (-0.854396) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006050 / 0.011353 (-0.005303) | 0.003614 / 0.011008 (-0.007394) | 0.061707 / 0.038508 (0.023199) | 0.062874 / 0.023109 (0.039765) | 0.364760 / 0.275898 (0.088862) | 0.398136 / 0.323480 (0.074656) | 0.005598 / 0.007986 (-0.002388) | 0.002836 / 0.004328 (-0.001493) | 0.061880 / 0.004250 (0.057630) | 0.048165 / 0.037052 (0.011113) | 0.372656 / 0.258489 (0.114167) | 0.403967 / 0.293841 (0.110126) | 0.027046 / 0.128546 (-0.101501) | 0.008091 / 0.075646 (-0.067555) | 0.066783 / 0.419271 (-0.352489) | 0.041186 / 0.043533 (-0.002347) | 0.376009 / 0.255139 (0.120870) | 0.391769 / 0.283200 (0.108569) | 0.021020 / 0.141683 (-0.120663) | 1.514593 / 1.452155 (0.062438) | 1.548506 / 1.492716 (0.055790) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237610 / 0.018006 (0.219604) | 0.434274 / 0.000490 (0.433784) | 0.009720 / 0.000200 (0.009520) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025605 / 0.037411 (-0.011807) | 0.078971 / 0.014526 (0.064445) | 0.088154 / 0.176557 (-0.088403) | 0.139112 / 0.737135 (-0.598023) | 0.088890 / 0.296338 (-0.207449) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420027 / 0.215209 (0.204818) | 4.189493 / 2.077655 (2.111838) | 2.143907 / 1.504120 (0.639787) | 1.967032 / 1.541195 (0.425837) | 2.011845 / 1.468490 (0.543355) | 0.496692 / 4.584777 (-4.088085) | 3.025456 / 3.745712 (-0.720256) | 2.828436 / 5.269862 (-2.441426) | 1.860673 / 4.565676 (-2.705003) | 0.057199 / 0.424275 (-0.367076) | 0.006770 / 0.007607 (-0.000838) | 0.491281 / 0.226044 (0.265236) | 4.918065 / 2.268929 (2.649136) | 2.593172 / 55.444624 (-52.851452) | 2.250750 / 6.876477 (-4.625727) | 2.406235 / 2.142072 (0.264162) | 0.588648 / 4.805227 (-4.216579) | 0.125635 / 6.500664 (-6.375029) | 0.061697 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374065 / 1.841788 (-0.467722) | 18.439315 / 8.074308 (10.365007) | 14.031660 / 10.191392 (3.840268) | 0.153665 / 0.680424 (-0.526759) | 0.016980 / 0.534201 (-0.517221) | 0.331799 / 0.579283 (-0.247484) | 0.343201 / 0.434364 (-0.091163) | 0.392445 / 0.540337 (-0.147892) | 0.530387 / 1.386936 (-0.856549) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008189 / 0.011353 (-0.003164) | 0.004598 / 0.011008 (-0.006410) | 0.102199 / 0.038508 (0.063691) | 0.077961 / 0.023109 (0.054852) | 0.364936 / 0.275898 (0.089038) | 0.402606 / 0.323480 (0.079126) | 0.005522 / 0.007986 (-0.002464) | 0.004007 / 0.004328 (-0.000322) | 0.071560 / 0.004250 (0.067310) | 0.055818 / 0.037052 (0.018765) | 0.378394 / 0.258489 (0.119905) | 0.428990 / 0.293841 (0.135149) | 0.043142 / 0.128546 (-0.085404) | 0.013254 / 0.075646 (-0.062392) | 0.331102 / 0.419271 (-0.088170) | 0.061407 / 0.043533 (0.017875) | 0.387397 / 0.255139 (0.132258) | 0.416062 / 0.283200 (0.132862) | 0.036330 / 0.141683 (-0.105353) | 1.735352 / 1.452155 (0.283198) | 1.773329 / 1.492716 (0.280613) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188587 / 0.018006 (0.170581) | 0.519506 / 0.000490 (0.519016) | 0.004702 / 0.000200 (0.004502) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027152 / 0.037411 (-0.010260) | 0.094296 / 0.014526 (0.079770) | 0.098155 / 0.176557 (-0.078402) | 0.162541 / 0.737135 (-0.574595) | 0.112092 / 0.296338 (-0.184246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.537555 / 0.215209 (0.322346) | 5.486821 / 2.077655 (3.409166) | 2.377127 / 1.504120 (0.873008) | 2.073205 / 1.541195 (0.532011) | 2.075130 / 1.468490 (0.606640) | 0.783779 / 4.584777 (-3.800998) | 5.029524 / 3.745712 (1.283812) | 4.382724 / 5.269862 (-0.887138) | 2.836180 / 4.565676 (-1.729496) | 0.108840 / 0.424275 (-0.315435) | 0.008123 / 0.007607 (0.000516) | 0.673460 / 0.226044 (0.447416) | 6.674030 / 2.268929 (4.405102) | 3.208922 / 55.444624 (-52.235702) | 2.464908 / 6.876477 (-4.411568) | 2.661929 / 2.142072 (0.519856) | 0.962529 / 4.805227 (-3.842698) | 0.197974 / 6.500664 (-6.302690) | 0.066656 / 0.075469 (-0.008813) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430373 / 1.841788 (-0.411415) | 21.180540 / 8.074308 (13.106232) | 19.027491 / 10.191392 (8.836099) | 0.217520 / 0.680424 (-0.462904) | 0.028038 / 0.534201 (-0.506163) | 0.435266 / 0.579283 (-0.144017) | 0.529510 / 0.434364 (0.095147) | 0.511011 / 0.540337 (-0.029327) | 0.728940 / 1.386936 (-0.657996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007883 / 0.011353 (-0.003470) | 0.004448 / 0.011008 (-0.006560) | 0.071350 / 0.038508 (0.032842) | 0.075269 / 0.023109 (0.052160) | 0.396705 / 0.275898 (0.120807) | 0.457809 / 0.323480 (0.134329) | 0.005193 / 0.007986 (-0.002792) | 0.003695 / 0.004328 (-0.000633) | 0.078087 / 0.004250 (0.073836) | 0.054276 / 0.037052 (0.017224) | 0.412184 / 0.258489 (0.153695) | 0.452400 / 0.293841 (0.158559) | 0.049762 / 0.128546 (-0.078784) | 0.013206 / 0.075646 (-0.062440) | 0.085985 / 0.419271 (-0.333287) | 0.058837 / 0.043533 (0.015304) | 0.432481 / 0.255139 (0.177342) | 0.433260 / 0.283200 (0.150060) | 0.031190 / 0.141683 (-0.110493) | 1.582707 / 1.452155 (0.130552) | 1.664457 / 1.492716 (0.171741) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223639 / 0.018006 (0.205633) | 0.524388 / 0.000490 (0.523899) | 0.005489 / 0.000200 (0.005289) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030182 / 0.037411 (-0.007230) | 0.089309 / 0.014526 (0.074783) | 0.103306 / 0.176557 (-0.073250) | 0.162624 / 0.737135 (-0.574511) | 0.108957 / 0.296338 (-0.187381) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.577423 / 0.215209 (0.362214) | 5.900154 / 2.077655 (3.822500) | 2.687369 / 1.504120 (1.183249) | 2.513061 / 1.541195 (0.971866) | 2.506453 / 1.468490 (1.037963) | 0.830838 / 4.584777 (-3.753939) | 5.032195 / 3.745712 (1.286483) | 4.396827 / 5.269862 (-0.873035) | 2.884230 / 4.565676 (-1.681447) | 0.102239 / 0.424275 (-0.322036) | 0.008178 / 0.007607 (0.000571) | 0.710027 / 0.226044 (0.483983) | 7.149626 / 2.268929 (4.880698) | 3.403605 / 55.444624 (-52.041019) | 2.661970 / 6.876477 (-4.214506) | 2.760227 / 2.142072 (0.618154) | 1.043981 / 4.805227 (-3.761246) | 0.195028 / 6.500664 (-6.305636) | 0.065211 / 0.075469 (-0.010258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.581265 / 1.841788 (-0.260522) | 21.640230 / 8.074308 (13.565922) | 19.031860 / 10.191392 (8.840468) | 0.196903 / 0.680424 (-0.483520) | 0.027061 / 0.534201 (-0.507140) | 0.444995 / 0.579283 (-0.134288) | 0.528195 / 0.434364 (0.093831) | 0.521540 / 0.540337 (-0.018797) | 0.730204 / 1.386936 (-0.656732) |\n\n</details>\n</details>\n\n\n"
] | "2023-08-03T10:18:32" | "2023-08-03T15:08:02" | "2023-08-03T10:24:57" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6115.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6115",
"merged_at": "2023-08-03T10:24:57Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6115.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6115"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6115/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6115/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6114 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6114/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6114/comments | https://api.github.com/repos/huggingface/datasets/issues/6114/events | https://github.com/huggingface/datasets/issues/6114 | 1,834,015,584 | I_kwDODunzps5tUNtg | 6,114 | Cache not being used when loading commonvoice 8.0.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/31082141?v=4",
"events_url": "https://api.github.com/users/clabornd/events{/privacy}",
"followers_url": "https://api.github.com/users/clabornd/followers",
"following_url": "https://api.github.com/users/clabornd/following{/other_user}",
"gists_url": "https://api.github.com/users/clabornd/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/clabornd",
"id": 31082141,
"login": "clabornd",
"node_id": "MDQ6VXNlcjMxMDgyMTQx",
"organizations_url": "https://api.github.com/users/clabornd/orgs",
"received_events_url": "https://api.github.com/users/clabornd/received_events",
"repos_url": "https://api.github.com/users/clabornd/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/clabornd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clabornd/subscriptions",
"type": "User",
"url": "https://api.github.com/users/clabornd"
} | [] | open | false | null | [] | null | [] | "2023-08-02T23:18:11" | "2023-08-02T23:20:31" | null | NONE | null | null | null | ### Describe the bug
I have commonvoice 8.0.0 downloaded in `~/.cache/huggingface/datasets/mozilla-foundation___common_voice_8_0/en/8.0.0/b2f8b72f8f30b2e98c41ccf855954d9e35a5fa498c43332df198534ff9797a4a`. The folder contains all the arrow files etc, and was used as the cached version last time I touched the ec2 instance I'm working on. Now, with the same command that downloaded it initially:
```
dataset = load_dataset("mozilla-foundation/common_voice_8_0", "en", use_auth_token="<mytoken>")
```
it tries to redownload the dataset to `~/.cache/huggingface/datasets/mozilla-foundation___common_voice_8_0/en/8.0.0/05bdc7940b0a336ceeaeef13470c89522c29a8e4494cbeece64fb472a87acb32`
### Steps to reproduce the bug
Steps to reproduce the behavior:
1. ```dataset = load_dataset("mozilla-foundation/common_voice_8_0", "en", use_auth_token="<mytoken>")```
2. ?
3. ```dataset = load_dataset("mozilla-foundation/common_voice_8_0", "en", use_auth_token="<mytoken>")```
### Expected behavior
I expect that it uses the already downloaded data in `~/.cache/huggingface/datasets/mozilla-foundation___common_voice_8_0/en/8.0.0/b2f8b72f8f30b2e98c41ccf855954d9e35a5fa498c43332df198534ff9797a4a`.
Not sure what's happening in 2. but if, say it's an issue with the dataset referenced by "mozilla-foundation/common_voice_8_0" being modified by the maintainers, how would I force datasets to point to the original version I downloaded?
### Environment info
datasets==2.7.0
python==3.10.8
OS: AWS Linux | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6114/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6114/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6113 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6113/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6113/comments | https://api.github.com/repos/huggingface/datasets/issues/6113/events | https://github.com/huggingface/datasets/issues/6113 | 1,833,854,030 | I_kwDODunzps5tTmRO | 6,113 | load_dataset() fails with streamlit caching inside docker | {
"avatar_url": "https://avatars.githubusercontent.com/u/987574?v=4",
"events_url": "https://api.github.com/users/fierval/events{/privacy}",
"followers_url": "https://api.github.com/users/fierval/followers",
"following_url": "https://api.github.com/users/fierval/following{/other_user}",
"gists_url": "https://api.github.com/users/fierval/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/fierval",
"id": 987574,
"login": "fierval",
"node_id": "MDQ6VXNlcjk4NzU3NA==",
"organizations_url": "https://api.github.com/users/fierval/orgs",
"received_events_url": "https://api.github.com/users/fierval/received_events",
"repos_url": "https://api.github.com/users/fierval/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/fierval/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fierval/subscriptions",
"type": "User",
"url": "https://api.github.com/users/fierval"
} | [] | open | false | null | [] | null | [] | "2023-08-02T20:20:26" | "2023-08-02T20:20:26" | null | NONE | null | null | null | ### Describe the bug
When calling `load_dataset` in a streamlit application running within a docker container, get a failure with the error message:
EmptyDatasetError: The directory at hf://datasets/fetch-rewards/inc-rings-2000@bea27cf60842b3641eae418f38864a2ec4cde684 doesn't contain any data files
Traceback:
File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 552, in _run_script
exec(code, module.__dict__)
File "/home/user/app/app.py", line 62, in <module>
dashboard()
File "/home/user/app/app.py", line 47, in dashboard
feat_dict, path_gml = load_data(hf_repo, model_gml_dict[selected_model], hf_token)
File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 211, in wrapper
return cached_func(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 240, in __call__
return self._get_or_create_cached_value(args, kwargs)
File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 266, in _get_or_create_cached_value
return self._handle_cache_miss(cache, value_key, func_args, func_kwargs)
File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 320, in _handle_cache_miss
computed_value = self._info.func(*func_args, **func_kwargs)
File "/home/user/app/hf_interface.py", line 16, in load_data
hf_dataset = load_dataset(repo_id, use_auth_token=hf_token)
File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 2109, in load_dataset
builder_instance = load_dataset_builder(
File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1795, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1486, in dataset_module_factory
raise e1 from None
File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1476, in dataset_module_factory
).get_module()
File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1032, in get_module
else get_data_patterns(base_path, download_config=self.download_config)
File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 458, in get_data_patterns
raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
### Steps to reproduce the bug
```python
@st.cache_resource
def load_data(repo_id: str, hf_token=None):
"""Load data from HuggingFace Hub
"""
hf_dataset = load_dataset(repo_id, use_auth_token=hf_token)
hf_dataset = hf_dataset.map(lambda x: json.loads(x["ground_truth"]), remove_columns=["ground_truth"])
return hf_dataset
```
### Expected behavior
Expect to load.
Note: works fine with datasets==2.13.1
### Environment info
datasets==2.14.2,
Ubuntu bionic-based Docker container. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6113/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6113/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6112 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6112/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6112/comments | https://api.github.com/repos/huggingface/datasets/issues/6112/events | https://github.com/huggingface/datasets/issues/6112 | 1,833,693,299 | I_kwDODunzps5tS_Bz | 6,112 | yaml error using push_to_hub with generated README.md | {
"avatar_url": "https://avatars.githubusercontent.com/u/1643887?v=4",
"events_url": "https://api.github.com/users/kevintee/events{/privacy}",
"followers_url": "https://api.github.com/users/kevintee/followers",
"following_url": "https://api.github.com/users/kevintee/following{/other_user}",
"gists_url": "https://api.github.com/users/kevintee/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kevintee",
"id": 1643887,
"login": "kevintee",
"node_id": "MDQ6VXNlcjE2NDM4ODc=",
"organizations_url": "https://api.github.com/users/kevintee/orgs",
"received_events_url": "https://api.github.com/users/kevintee/received_events",
"repos_url": "https://api.github.com/users/kevintee/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kevintee/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kevintee/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kevintee"
} | [] | open | false | null | [] | null | [] | "2023-08-02T18:21:21" | "2023-08-02T18:21:21" | null | NONE | null | null | null | ### Describe the bug
When I construct a dataset with the following features:
```
features = Features(
{
"pixel_values": Array3D(dtype="float64", shape=(3, 224, 224)),
"input_ids": Sequence(feature=Value(dtype="int64")),
"attention_mask": Sequence(Value(dtype="int64")),
"tokens": Sequence(Value(dtype="string")),
"bbox": Array2D(dtype="int64", shape=(512, 4)),
}
)
```
and run `push_to_hub`, the individual `*.parquet` files are pushed, but when trying to upload the auto-generated README, I run into the following error:
```
Traceback (most recent call last):
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 261, in hf_raise_for_status
response.raise_for_status()
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/requests/models.py", line 1021, in raise_for_status
raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/looppayments/multitask_document_classification_dataset/commit/main
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/Users/kevintee/loop-payments/ml/src/ml/data_scripts/build_document_classification_training_data.py", line 297, in <module>
build_dataset()
File "/Users/kevintee/loop-payments/ml/src/ml/data_scripts/build_document_classification_training_data.py", line 290, in build_dataset
push_to_hub(dataset, "multitask_document_classification_dataset")
File "/Users/kevintee/loop-payments/ml/src/ml/data_scripts/build_document_classification_training_data.py", line 135, in push_to_hub
dataset.push_to_hub(f"looppayments/{dataset_name}", private=True)
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5577, in push_to_hub
HfApi(endpoint=config.HF_ENDPOINT).upload_file(
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn
return fn(*args, **kwargs)
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 828, in _inner
return fn(self, *args, **kwargs)
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 3221, in upload_file
commit_info = self.create_commit(
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn
return fn(*args, **kwargs)
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 828, in _inner
return fn(self, *args, **kwargs)
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2728, in create_commit
hf_raise_for_status(commit_resp, endpoint_name="commit")
File "/Users/kevintee/.pyenv/versions/dev2/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 299, in hf_raise_for_status
raise BadRequestError(message, response=response) from e
huggingface_hub.utils._errors.BadRequestError: (Request ID: Root=1-64ca9c3d-2d2bbef354e102482a9a168e;bc00371c-8549-4859-9f41-43ff140ad36e)
Bad request for commit endpoint:
Invalid YAML in README.md: unknown tag !<tag:yaml.org,2002:python/tuple> (10:9)
7 | - 3
8 | - 224
9 | - 224
10 | dtype: float64
--------------^
11 | - name: input_ids
12 | sequence: int64
```
My guess is that the auto-generated yaml is unable to be parsed for some reason.
### Steps to reproduce the bug
The description contains most of what's needed to reproduce the issue, but I've added a shortened code snippet:
```
from datasets import Array2D, Array3D, ClassLabel, Dataset, Features, Sequence, Value
from PIL import Image
from transformers import AutoProcessor
features = Features(
{
"pixel_values": Array3D(dtype="float64", shape=(3, 224, 224)),
"input_ids": Sequence(feature=Value(dtype="int64")),
"attention_mask": Sequence(Value(dtype="int64")),
"tokens": Sequence(Value(dtype="string")),
"bbox": Array2D(dtype="int64", shape=(512, 4)),
}
)
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
def preprocess_dataset(rows):
# Get images
images = [
Image.open(png_filename).convert("RGB") for png_filename in rows["png_filename"]
]
encoding = processor(
images,
rows["tokens"],
boxes=rows["bbox"],
truncation=True,
padding="max_length",
)
encoding["tokens"] = rows["tokens"]
return encoding
dataset = dataset.map(
preprocess_dataset,
batched=True,
batch_size=5,
features=features,
)
```
### Expected behavior
Using datasets==2.11.0, I'm able to succesfully push_to_hub, no issues, but with datasets==2.14.2, I run into the above error.
### Environment info
- `datasets` version: 2.14.2
- Platform: macOS-12.5-arm64-arm-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 1.5.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6112/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6112/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6111 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6111/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6111/comments | https://api.github.com/repos/huggingface/datasets/issues/6111/events | https://github.com/huggingface/datasets/issues/6111 | 1,832,781,654 | I_kwDODunzps5tPgdW | 6,111 | raise FileNotFoundError("Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory." ) | {
"avatar_url": "https://avatars.githubusercontent.com/u/41530341?v=4",
"events_url": "https://api.github.com/users/2catycm/events{/privacy}",
"followers_url": "https://api.github.com/users/2catycm/followers",
"following_url": "https://api.github.com/users/2catycm/following{/other_user}",
"gists_url": "https://api.github.com/users/2catycm/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/2catycm",
"id": 41530341,
"login": "2catycm",
"node_id": "MDQ6VXNlcjQxNTMwMzQx",
"organizations_url": "https://api.github.com/users/2catycm/orgs",
"received_events_url": "https://api.github.com/users/2catycm/received_events",
"repos_url": "https://api.github.com/users/2catycm/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/2catycm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/2catycm/subscriptions",
"type": "User",
"url": "https://api.github.com/users/2catycm"
} | [] | open | false | null | [] | null | [] | "2023-08-02T09:17:29" | "2023-08-02T09:17:29" | null | NONE | null | null | null | ### Describe the bug
For researchers in some countries or regions, it is usually the case that the download ability of `load_dataset` is disabled due to the complex network environment. People in these regions often prefer to use git clone or other programming tricks to manually download the files to the disk (for example, [How to elegantly download hf models, zhihu zhuanlan](https://zhuanlan.zhihu.com/p/475260268) proposed a crawlder based solution, and [Is there any mirror for hf_hub, zhihu answer](https://www.zhihu.com/question/371644077) provided some cloud based solutions, and [How to avoid pitfalls on Hugging face downloading, zhihu zhuanlan] gave some useful suggestions), and then use `load_from_disk` to get the dataset object.
However, when one finally has the local files on the disk, it is still buggy when trying to load the files into objects.
### Steps to reproduce the bug
Steps to reproduce the bug:
1. Found CIFAR dataset in hugging face: https://huggingface.co/datasets/cifar100/tree/main
2. Click ":" button to show "Clone repository" option, and then follow the prompts on the box:
```bash
cd my_directory_absolute
git lfs install
git clone https://huggingface.co/datasets/cifar100
ls my_directory_absolute/cifar100 # confirm that the directory exists and it is OK.
```
3. Write A python file to try to load the dataset
```python
from datasets import load_dataset, load_from_disk
dataset = load_from_disk("my_directory_absolute/cifar100")
```
Notice that according to issue #3700 , it is wrong to use load_dataset("my_directory_absolute/cifar100"), so we must use load_from_disk instead.
4. Then you will see the error reported:
```log
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[5], line 9
1 from datasets import load_dataset, load_from_disk
----> 9 dataset = load_from_disk("my_directory_absolute/cifar100")
File [~/miniconda3/envs/ai/lib/python3.10/site-packages/datasets/load.py:2232), in load_from_disk(dataset_path, fs, keep_in_memory, storage_options)
2230 return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
2231 else:
-> 2232 raise FileNotFoundError(
2233 f"Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory."
2234 )
FileNotFoundError: Directory my_directory_absolute/cifar100 is neither a `Dataset` directory nor a `DatasetDict` directory.
```
### Expected behavior
The dataset should be load successfully.
### Environment info
```bash
datasets-cli env
```
-> results:
```txt
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.14.2
- Platform: Linux-4.18.0-372.32.1.el8_6.x86_64-x86_64-with-glibc2.28
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6111/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6111/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6110 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6110/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6110/comments | https://api.github.com/repos/huggingface/datasets/issues/6110/events | https://github.com/huggingface/datasets/issues/6110 | 1,831,110,633 | I_kwDODunzps5tJIfp | 6,110 | [BUG] Dataset initialized from in-memory data does not create cache. | {
"avatar_url": "https://avatars.githubusercontent.com/u/57797966?v=4",
"events_url": "https://api.github.com/users/MattYoon/events{/privacy}",
"followers_url": "https://api.github.com/users/MattYoon/followers",
"following_url": "https://api.github.com/users/MattYoon/following{/other_user}",
"gists_url": "https://api.github.com/users/MattYoon/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MattYoon",
"id": 57797966,
"login": "MattYoon",
"node_id": "MDQ6VXNlcjU3Nzk3OTY2",
"organizations_url": "https://api.github.com/users/MattYoon/orgs",
"received_events_url": "https://api.github.com/users/MattYoon/received_events",
"repos_url": "https://api.github.com/users/MattYoon/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MattYoon/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MattYoon/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MattYoon"
} | [] | open | false | null | [] | null | [] | "2023-08-01T11:58:58" | "2023-08-01T12:04:57" | null | NONE | null | null | null | ### Describe the bug
`Dataset` initialized from in-memory data (dictionary in my case, haven't tested with other types) does not create cache when processed with the `map` method, unlike `Dataset` initialized by other methods such as `load_dataset`.
### Steps to reproduce the bug
```python
# below code was run the second time so the map function can be loaded from cache if exists
from datasets import load_dataset, Dataset
dataset = load_dataset("tatsu-lab/alpaca")['train']
dataset = dataset.map(lambda x: {'input': x['input'] + 'hi'}) # some random map
print(len(dataset.cache_files))
# 1
# copy the exact same data but initialize from a dictionary
memory_dataset = Dataset.from_dict({
'instruction': dataset['instruction'],
'input': dataset['input'],
'output': dataset['output'],
'text': dataset['text']})
memory_dataset = memory_dataset.map(lambda x: {'input': x['input'] + 'hi'}) # exact same map
print(len(memory_dataset.cache_files))
# Map: 100%|██████████| 52002[/52002]
# 0
```
### Expected behavior
The `map` function should create cache regardless of the method the `Dataset` was created.
### Environment info
- `datasets` version: 2.14.2
- Platform: Linux-5.15.0-41-generic-x86_64-with-glibc2.31
- Python version: 3.9.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6110/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6110/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6109 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6109/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6109/comments | https://api.github.com/repos/huggingface/datasets/issues/6109/events | https://github.com/huggingface/datasets/issues/6109 | 1,830,753,793 | I_kwDODunzps5tHxYB | 6,109 | Problems in downloading Amazon reviews from HF | {
"avatar_url": "https://avatars.githubusercontent.com/u/52964960?v=4",
"events_url": "https://api.github.com/users/610v4nn1/events{/privacy}",
"followers_url": "https://api.github.com/users/610v4nn1/followers",
"following_url": "https://api.github.com/users/610v4nn1/following{/other_user}",
"gists_url": "https://api.github.com/users/610v4nn1/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/610v4nn1",
"id": 52964960,
"login": "610v4nn1",
"node_id": "MDQ6VXNlcjUyOTY0OTYw",
"organizations_url": "https://api.github.com/users/610v4nn1/orgs",
"received_events_url": "https://api.github.com/users/610v4nn1/received_events",
"repos_url": "https://api.github.com/users/610v4nn1/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/610v4nn1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/610v4nn1/subscriptions",
"type": "User",
"url": "https://api.github.com/users/610v4nn1"
} | [] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Thanks for reporting, @610v4nn1.\r\n\r\nIndeed, the source data files are no longer available. We have contacted the authors of the dataset and they report that Amazon has decided to stop distributing the multilingual reviews dataset.\r\n\r\nWe are adding a notification about this issue to the dataset card.\r\n\r\nSee: https://huggingface.co/datasets/amazon_reviews_multi/discussions/4#64c3898db63057f1fd3ce1a0 "
] | "2023-08-01T08:38:29" | "2023-08-02T07:12:07" | "2023-08-02T07:12:07" | NONE | null | null | null | ### Describe the bug
I have a script downloading `amazon_reviews_multi`.
When the download starts, I get
```
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]
Downloading data: 243B [00:00, 1.43MB/s]
Downloading data files: 100%|██████████| 1/1 [00:01<00:00, 1.54s/it]
Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 842.40it/s]
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]
Downloading data: 243B [00:00, 928kB/s]
Downloading data files: 100%|██████████| 1/1 [00:01<00:00, 1.42s/it]
Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 832.70it/s]
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]
Downloading data: 243B [00:00, 1.81MB/s]
Downloading data files: 100%|██████████| 1/1 [00:01<00:00, 1.40s/it]
Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 1294.14it/s]
Generating train split: 0%| | 0/200000 [00:00<?, ? examples/s]
```
the file is clearly too small to contain the requested dataset, in fact it contains en error message:
```
<?xml version="1.0" encoding="UTF-8"?>
<Error><Code>AccessDenied</Code><Message>Access Denied</Message><RequestId>AGJWSY3ZADT2QVWE</RequestId><HostId>Gx1O2KXnxtQFqvzDLxyVSTq3+TTJuTnuVFnJL3SP89Yp8UzvYLPTVwd1PpniE4EvQzT3tCaqEJw=</HostId></Error>
```
obviously the script fails:
```
> raise DatasetGenerationError("An error occurred while generating the dataset") from e
E datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Steps to reproduce the bug
1. load_dataset("amazon_reviews_multi", name="en", split="train", cache_dir="ADDYOURPATHHERE")
### Expected behavior
I would expect the dataset to be downloaded and processed
### Environment info
* The problem is present with both datasets 2.12.0 and 2.14.2
* python version 3.10.12 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6109/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6109/timeline | null | not_planned | false |
https://api.github.com/repos/huggingface/datasets/issues/6108 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6108/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6108/comments | https://api.github.com/repos/huggingface/datasets/issues/6108/events | https://github.com/huggingface/datasets/issues/6108 | 1,830,347,187 | I_kwDODunzps5tGOGz | 6,108 | Loading local datasets got strangely stuck | {
"avatar_url": "https://avatars.githubusercontent.com/u/48412571?v=4",
"events_url": "https://api.github.com/users/LoveCatc/events{/privacy}",
"followers_url": "https://api.github.com/users/LoveCatc/followers",
"following_url": "https://api.github.com/users/LoveCatc/following{/other_user}",
"gists_url": "https://api.github.com/users/LoveCatc/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/LoveCatc",
"id": 48412571,
"login": "LoveCatc",
"node_id": "MDQ6VXNlcjQ4NDEyNTcx",
"organizations_url": "https://api.github.com/users/LoveCatc/orgs",
"received_events_url": "https://api.github.com/users/LoveCatc/received_events",
"repos_url": "https://api.github.com/users/LoveCatc/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/LoveCatc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LoveCatc/subscriptions",
"type": "User",
"url": "https://api.github.com/users/LoveCatc"
} | [] | open | false | null | [] | null | [
"Yesterday I waited for more than 12 hours to make sure it was really **stuck** instead of proceeding too slow.",
"I've had similar weird issues with `load_dataset` as well. Not multiple files, but dataset is quite big, about 50G."
] | "2023-08-01T02:28:06" | "2023-08-03T12:03:30" | null | NONE | null | null | null | ### Describe the bug
I try to use `load_dataset()` to load several local `.jsonl` files as a dataset. Every line of these files is a json structure only containing one key `text` (yeah it is a dataset for NLP model). The code snippet is as:
```python
ds = load_dataset("json", data_files=LIST_OF_FILE_PATHS, num_proc=16)['train']
```
However, I found that the loading process can get stuck -- the progress bar `Generating train split` no more proceed. When I was trying to find the cause and solution, I found a really strange behavior. If I load the dataset in this way:
```python
dlist = list()
for _ in LIST_OF_FILE_PATHS:
dlist.append(load_dataset("json", data_files=_)['train'])
ds = concatenate_datasets(dlist)
```
I can actually successfully load all the files despite its slow speed. But if I load them in batch like above, things go wrong. I did try to use Control-C to trace the stuck point but the program cannot be terminated in this way when `num_proc` is set to `None`. The only thing I can do is use Control-Z to hang it up then kill it. If I use more than 2 cpus, a Control-C would simply cause the following error:
```bash
^C
Process ForkPoolWorker-1:
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/multiprocess/process.py", line 314, in _bootstrap
self.run()
File "/usr/local/lib/python3.10/dist-packages/multiprocess/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.10/dist-packages/multiprocess/pool.py", line 114, in worker
task = get()
File "/usr/local/lib/python3.10/dist-packages/multiprocess/queues.py", line 368, in get
res = self._reader.recv_bytes()
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 224, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 422, in _recv_bytes
buf = self._recv(4)
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 387, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Generating train split: 92431 examples [01:23, 1104.25 examples/s]
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 1373, in iflatmap_unordered
yield queue.get(timeout=0.05)
File "<string>", line 2, in get
File "/usr/local/lib/python3.10/dist-packages/multiprocess/managers.py", line 818, in _callmethod
kind, result = conn.recv()
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 258, in recv
buf = self._recv_bytes()
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 422, in _recv_bytes
buf = self._recv(4)
File "/usr/local/lib/python3.10/dist-packages/multiprocess/connection.py", line 387, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/mnt/data/liyongyuan/source/batch_load.py", line 11, in <module>
a = load_dataset(
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2133, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 954, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1049, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1842, in _prepare_split
for job_id, done, content in iflatmap_unordered(
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 1387, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 1387, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
File "/usr/local/lib/python3.10/dist-packages/multiprocess/pool.py", line 770, in get
raise TimeoutError
multiprocess.context.TimeoutError
```
I have validated the basic correctness of these `.jsonl` files. They are correctly formatted (or they cannot be loaded singly by `load_dataset`) though some of the json may contain too long text (more than 1e7 characters). I do not know if this could be the problem. And there should not be any bottleneck in system's resource. The whole dataset is ~300GB, and I am using a cloud server with plenty of storage and 1TB ram.
Thanks for your efforts and patience! Any suggestion or help would be appreciated.
### Steps to reproduce the bug
1. use load_dataset() with `data_files = LIST_OF_FILES`
### Expected behavior
All the files should be smoothly loaded.
### Environment info
- Datasets: A private dataset. ~2500 `.jsonl` files. ~300GB in total. Each json structure only contains one key: `text`. Format checked.
- `datasets` version: 2.14.2
- Platform: Linux-4.19.91-014.kangaroo.alios7.x86_64-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 10.0.1.dev0+ga6eabc2b.d20230609
- Pandas version: 1.5.2 | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6108/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6108/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6107 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6107/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6107/comments | https://api.github.com/repos/huggingface/datasets/issues/6107/events | https://github.com/huggingface/datasets/pull/6107 | 1,829,625,320 | PR_kwDODunzps5W0rLR | 6,107 | Fix deprecation of use_auth_token in file_utils | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007678 / 0.011353 (-0.003675) | 0.004233 / 0.011008 (-0.006776) | 0.095934 / 0.038508 (0.057426) | 0.064201 / 0.023109 (0.041092) | 0.345765 / 0.275898 (0.069867) | 0.383089 / 0.323480 (0.059609) | 0.004084 / 0.007986 (-0.003902) | 0.003311 / 0.004328 (-0.001017) | 0.072367 / 0.004250 (0.068117) | 0.048252 / 0.037052 (0.011200) | 0.338340 / 0.258489 (0.079851) | 0.391627 / 0.293841 (0.097786) | 0.045203 / 0.128546 (-0.083343) | 0.013494 / 0.075646 (-0.062153) | 0.314097 / 0.419271 (-0.105174) | 0.058183 / 0.043533 (0.014650) | 0.353946 / 0.255139 (0.098807) | 0.385181 / 0.283200 (0.101981) | 0.033111 / 0.141683 (-0.108572) | 1.578489 / 1.452155 (0.126335) | 1.631660 / 1.492716 (0.138944) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202592 / 0.018006 (0.184586) | 0.506450 / 0.000490 (0.505961) | 0.004630 / 0.000200 (0.004430) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024761 / 0.037411 (-0.012651) | 0.086295 / 0.014526 (0.071769) | 0.094063 / 0.176557 (-0.082494) | 0.154189 / 0.737135 (-0.582947) | 0.096273 / 0.296338 (-0.200065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.581731 / 0.215209 (0.366522) | 5.552020 / 2.077655 (3.474365) | 2.430800 / 1.504120 (0.926680) | 2.130864 / 1.541195 (0.589669) | 2.092802 / 1.468490 (0.624312) | 0.833956 / 4.584777 (-3.750821) | 4.840859 / 3.745712 (1.095147) | 4.267812 / 5.269862 (-1.002050) | 2.663245 / 4.565676 (-1.902432) | 0.093195 / 0.424275 (-0.331080) | 0.007942 / 0.007607 (0.000335) | 0.651457 / 0.226044 (0.425413) | 6.782986 / 2.268929 (4.514058) | 3.103307 / 55.444624 (-52.341318) | 2.373933 / 6.876477 (-4.502544) | 2.571613 / 2.142072 (0.429540) | 0.981389 / 4.805227 (-3.823839) | 0.199019 / 6.500664 (-6.301645) | 0.065828 / 0.075469 (-0.009641) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.429778 / 1.841788 (-0.412009) | 20.967563 / 8.074308 (12.893255) | 19.329723 / 10.191392 (9.138331) | 0.222048 / 0.680424 (-0.458376) | 0.033507 / 0.534201 (-0.500694) | 0.436801 / 0.579283 (-0.142482) | 0.530197 / 0.434364 (0.095833) | 0.491532 / 0.540337 (-0.048805) | 0.718216 / 1.386936 (-0.668720) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007798 / 0.011353 (-0.003555) | 0.004748 / 0.011008 (-0.006260) | 0.070847 / 0.038508 (0.032339) | 0.069338 / 0.023109 (0.046229) | 0.400890 / 0.275898 (0.124992) | 0.429482 / 0.323480 (0.106002) | 0.006469 / 0.007986 (-0.001517) | 0.003514 / 0.004328 (-0.000814) | 0.069049 / 0.004250 (0.064798) | 0.059800 / 0.037052 (0.022748) | 0.415644 / 0.258489 (0.157155) | 0.432562 / 0.293841 (0.138721) | 0.043778 / 0.128546 (-0.084768) | 0.015141 / 0.075646 (-0.060506) | 0.081521 / 0.419271 (-0.337750) | 0.054692 / 0.043533 (0.011160) | 0.404497 / 0.255139 (0.149358) | 0.419783 / 0.283200 (0.136583) | 0.029588 / 0.141683 (-0.112094) | 1.593506 / 1.452155 (0.141351) | 1.615977 / 1.492716 (0.123261) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270981 / 0.018006 (0.252975) | 0.522074 / 0.000490 (0.521584) | 0.026568 / 0.000200 (0.026368) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031551 / 0.037411 (-0.005861) | 0.086723 / 0.014526 (0.072197) | 0.103315 / 0.176557 (-0.073242) | 0.154692 / 0.737135 (-0.582443) | 0.099472 / 0.296338 (-0.196866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.570238 / 0.215209 (0.355029) | 5.655963 / 2.077655 (3.578308) | 2.662670 / 1.504120 (1.158550) | 2.380903 / 1.541195 (0.839709) | 2.409467 / 1.468490 (0.940977) | 0.828055 / 4.584777 (-3.756722) | 4.964698 / 3.745712 (1.218986) | 4.299995 / 5.269862 (-0.969867) | 2.824162 / 4.565676 (-1.741514) | 0.095872 / 0.424275 (-0.328403) | 0.007907 / 0.007607 (0.000300) | 0.701595 / 0.226044 (0.475551) | 7.131965 / 2.268929 (4.863036) | 3.250554 / 55.444624 (-52.194070) | 2.531916 / 6.876477 (-4.344561) | 2.717908 / 2.142072 (0.575835) | 1.014479 / 4.805227 (-3.790748) | 0.223804 / 6.500664 (-6.276861) | 0.071893 / 0.075469 (-0.003576) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541702 / 1.841788 (-0.300086) | 21.668219 / 8.074308 (13.593911) | 18.916032 / 10.191392 (8.724640) | 0.205915 / 0.680424 (-0.474508) | 0.026356 / 0.534201 (-0.507845) | 0.429122 / 0.579283 (-0.150161) | 0.506110 / 0.434364 (0.071746) | 0.510148 / 0.540337 (-0.030190) | 0.724699 / 1.386936 (-0.662237) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006884 / 0.011353 (-0.004469) | 0.004492 / 0.011008 (-0.006516) | 0.085439 / 0.038508 (0.046931) | 0.083905 / 0.023109 (0.060796) | 0.313604 / 0.275898 (0.037706) | 0.354683 / 0.323480 (0.031203) | 0.006535 / 0.007986 (-0.001451) | 0.004318 / 0.004328 (-0.000011) | 0.066129 / 0.004250 (0.061879) | 0.057568 / 0.037052 (0.020516) | 0.317162 / 0.258489 (0.058672) | 0.372501 / 0.293841 (0.078660) | 0.031059 / 0.128546 (-0.097488) | 0.009013 / 0.075646 (-0.066634) | 0.288794 / 0.419271 (-0.130478) | 0.053326 / 0.043533 (0.009793) | 0.314318 / 0.255139 (0.059179) | 0.357505 / 0.283200 (0.074305) | 0.027020 / 0.141683 (-0.114663) | 1.530653 / 1.452155 (0.078498) | 1.599782 / 1.492716 (0.107066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278788 / 0.018006 (0.260782) | 0.626822 / 0.000490 (0.626333) | 0.003780 / 0.000200 (0.003580) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031703 / 0.037411 (-0.005708) | 0.085654 / 0.014526 (0.071128) | 0.754858 / 0.176557 (0.578301) | 0.212251 / 0.737135 (-0.524885) | 0.171344 / 0.296338 (-0.124994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382291 / 0.215209 (0.167082) | 3.825612 / 2.077655 (1.747958) | 1.874553 / 1.504120 (0.370433) | 1.712574 / 1.541195 (0.171379) | 1.791479 / 1.468490 (0.322989) | 0.481005 / 4.584777 (-4.103772) | 3.530559 / 3.745712 (-0.215153) | 3.395305 / 5.269862 (-1.874557) | 2.133747 / 4.565676 (-2.431930) | 0.056139 / 0.424275 (-0.368136) | 0.007424 / 0.007607 (-0.000183) | 0.458321 / 0.226044 (0.232277) | 4.577665 / 2.268929 (2.308736) | 2.380233 / 55.444624 (-53.064392) | 2.004060 / 6.876477 (-4.872417) | 2.290712 / 2.142072 (0.148639) | 0.570157 / 4.805227 (-4.235070) | 0.131670 / 6.500664 (-6.368994) | 0.060684 / 0.075469 (-0.014785) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294929 / 1.841788 (-0.546858) | 21.386663 / 8.074308 (13.312355) | 14.389440 / 10.191392 (4.198048) | 0.171177 / 0.680424 (-0.509247) | 0.018660 / 0.534201 (-0.515541) | 0.394385 / 0.579283 (-0.184898) | 0.424942 / 0.434364 (-0.009422) | 0.463618 / 0.540337 (-0.076719) | 0.651499 / 1.386936 (-0.735437) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007079 / 0.011353 (-0.004274) | 0.004615 / 0.011008 (-0.006393) | 0.066300 / 0.038508 (0.027792) | 0.092636 / 0.023109 (0.069527) | 0.399080 / 0.275898 (0.123182) | 0.429873 / 0.323480 (0.106393) | 0.006689 / 0.007986 (-0.001297) | 0.004358 / 0.004328 (0.000029) | 0.067155 / 0.004250 (0.062905) | 0.064040 / 0.037052 (0.026988) | 0.399905 / 0.258489 (0.141416) | 0.448237 / 0.293841 (0.154397) | 0.031985 / 0.128546 (-0.096561) | 0.009053 / 0.075646 (-0.066593) | 0.071904 / 0.419271 (-0.347368) | 0.048759 / 0.043533 (0.005227) | 0.386797 / 0.255139 (0.131658) | 0.411240 / 0.283200 (0.128040) | 0.028568 / 0.141683 (-0.113115) | 1.501037 / 1.452155 (0.048882) | 1.594560 / 1.492716 (0.101844) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300756 / 0.018006 (0.282750) | 0.631220 / 0.000490 (0.630730) | 0.010163 / 0.000200 (0.009963) | 0.000144 / 0.000054 (0.000089) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033716 / 0.037411 (-0.003695) | 0.093562 / 0.014526 (0.079037) | 0.106975 / 0.176557 (-0.069582) | 0.161919 / 0.737135 (-0.575216) | 0.113397 / 0.296338 (-0.182942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.410392 / 0.215209 (0.195183) | 4.094411 / 2.077655 (2.016756) | 2.085868 / 1.504120 (0.581748) | 1.959589 / 1.541195 (0.418394) | 2.096683 / 1.468490 (0.628193) | 0.494593 / 4.584777 (-4.090184) | 3.854302 / 3.745712 (0.108590) | 3.742303 / 5.269862 (-1.527558) | 2.379983 / 4.565676 (-2.185693) | 0.058640 / 0.424275 (-0.365635) | 0.008092 / 0.007607 (0.000484) | 0.486957 / 0.226044 (0.260912) | 4.855784 / 2.268929 (2.586855) | 2.654029 / 55.444624 (-52.790595) | 2.237627 / 6.876477 (-4.638850) | 2.536955 / 2.142072 (0.394882) | 0.622398 / 4.805227 (-4.182829) | 0.139212 / 6.500664 (-6.361452) | 0.062805 / 0.075469 (-0.012664) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374862 / 1.841788 (-0.466926) | 22.797015 / 8.074308 (14.722707) | 14.393995 / 10.191392 (4.202603) | 0.196603 / 0.680424 (-0.483821) | 0.018602 / 0.534201 (-0.515599) | 0.394568 / 0.579283 (-0.184715) | 0.408792 / 0.434364 (-0.025572) | 0.486706 / 0.540337 (-0.053631) | 0.652365 / 1.386936 (-0.734571) |\n\n</details>\n</details>\n\n\n"
] | "2023-07-31T16:32:01" | "2023-08-03T10:13:32" | "2023-08-03T10:04:18" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6107.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6107",
"merged_at": "2023-08-03T10:04:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6107.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6107"
} | Fix issues with the deprecation of `use_auth_token` introduced by:
- #5996
in functions:
- `get_authentication_headers_for_url`
- `request_etag`
- `get_from_cache`
Currently, `TypeError` is raised: https://github.com/huggingface/datasets-server/actions/runs/5711650666/job/15484685570?pr=1588
```
FAILED tests/job_runners/config/test_parquet_and_info.py::test__is_too_big_external_files[None-None-False] - TypeError: get_authentication_headers_for_url() got an unexpected keyword argument 'use_auth_token'
FAILED tests/job_runners/config/test_parquet_and_info.py::test_fill_builder_info[None-False] - libcommon.exceptions.FileSystemError: Could not read the parquet files: get_authentication_headers_for_url() got an unexpected keyword argument 'use_auth_token'
```
Related to:
- #6094 | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6107/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6107/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6106 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6106/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6106/comments | https://api.github.com/repos/huggingface/datasets/issues/6106/events | https://github.com/huggingface/datasets/issues/6106 | 1,829,131,223 | I_kwDODunzps5tBlPX | 6,106 | load local json_file as dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/39040787?v=4",
"events_url": "https://api.github.com/users/CiaoHe/events{/privacy}",
"followers_url": "https://api.github.com/users/CiaoHe/followers",
"following_url": "https://api.github.com/users/CiaoHe/following{/other_user}",
"gists_url": "https://api.github.com/users/CiaoHe/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/CiaoHe",
"id": 39040787,
"login": "CiaoHe",
"node_id": "MDQ6VXNlcjM5MDQwNzg3",
"organizations_url": "https://api.github.com/users/CiaoHe/orgs",
"received_events_url": "https://api.github.com/users/CiaoHe/received_events",
"repos_url": "https://api.github.com/users/CiaoHe/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/CiaoHe/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/CiaoHe/subscriptions",
"type": "User",
"url": "https://api.github.com/users/CiaoHe"
} | [] | open | false | null | [] | null | [] | "2023-07-31T12:53:49" | "2023-07-31T12:53:49" | null | NONE | null | null | null | ### Describe the bug
I tried to load local json file as dataset but failed to parsing json file because some columns are 'float' type.
### Steps to reproduce the bug
1. load json file with certain columns are 'float' type. For example `data = load_data("json", data_files=JSON_PATH)`
2. Then, the error will be triggered like `ArrowInvalid: Could not convert '-0.2253' with type str: tried to convert to double
### Expected behavior
Should allow some columns are 'float' type, at least it should convert those columns to str type.
I tried to avoid the error by naively convert the float item to str:
```python
# if col type is not str, we need to convert it to str
mapping = {}
for col in keys:
if isinstance(dataset[0][col], str):
mapping[col] = [row.get(col) for row in dataset]
else:
mapping[col] = [str(row.get(col)) for row in dataset]
```
### Environment info
- `datasets` version: 2.14.2
- Platform: Linux-5.4.0-52-generic-x86_64-with-glibc2.31
- Python version: 3.9.16
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.0
- Pandas version: 2.0.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6106/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6106/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6105 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6105/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6105/comments | https://api.github.com/repos/huggingface/datasets/issues/6105/events | https://github.com/huggingface/datasets/pull/6105 | 1,829,008,430 | PR_kwDODunzps5WyiJD | 6,105 | Fix error when loading from GCP bucket | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006706 / 0.011353 (-0.004647) | 0.004016 / 0.011008 (-0.006992) | 0.083696 / 0.038508 (0.045188) | 0.074340 / 0.023109 (0.051230) | 0.327338 / 0.275898 (0.051440) | 0.366663 / 0.323480 (0.043183) | 0.004052 / 0.007986 (-0.003934) | 0.003423 / 0.004328 (-0.000906) | 0.064576 / 0.004250 (0.060326) | 0.055037 / 0.037052 (0.017985) | 0.325089 / 0.258489 (0.066600) | 0.379986 / 0.293841 (0.086145) | 0.031614 / 0.128546 (-0.096932) | 0.008553 / 0.075646 (-0.067094) | 0.287430 / 0.419271 (-0.131841) | 0.053032 / 0.043533 (0.009499) | 0.318990 / 0.255139 (0.063851) | 0.364426 / 0.283200 (0.081226) | 0.024926 / 0.141683 (-0.116757) | 1.461835 / 1.452155 (0.009680) | 1.557172 / 1.492716 (0.064456) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212430 / 0.018006 (0.194424) | 0.512891 / 0.000490 (0.512402) | 0.004772 / 0.000200 (0.004572) | 0.000132 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027873 / 0.037411 (-0.009538) | 0.085598 / 0.014526 (0.071072) | 0.097330 / 0.176557 (-0.079226) | 0.152235 / 0.737135 (-0.584900) | 0.097787 / 0.296338 (-0.198552) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384645 / 0.215209 (0.169436) | 3.841161 / 2.077655 (1.763506) | 1.863696 / 1.504120 (0.359577) | 1.685082 / 1.541195 (0.143887) | 1.772904 / 1.468490 (0.304414) | 0.480177 / 4.584777 (-4.104599) | 3.601537 / 3.745712 (-0.144175) | 3.273647 / 5.269862 (-1.996214) | 2.014415 / 4.565676 (-2.551261) | 0.056668 / 0.424275 (-0.367607) | 0.007257 / 0.007607 (-0.000350) | 0.458194 / 0.226044 (0.232150) | 4.577311 / 2.268929 (2.308382) | 2.333983 / 55.444624 (-53.110641) | 1.964508 / 6.876477 (-4.911969) | 2.193379 / 2.142072 (0.051307) | 0.577557 / 4.805227 (-4.227670) | 0.133899 / 6.500664 (-6.366765) | 0.060804 / 0.075469 (-0.014665) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249490 / 1.841788 (-0.592298) | 19.791875 / 8.074308 (11.717567) | 14.418728 / 10.191392 (4.227336) | 0.167788 / 0.680424 (-0.512636) | 0.018993 / 0.534201 (-0.515208) | 0.396141 / 0.579283 (-0.183142) | 0.412427 / 0.434364 (-0.021937) | 0.456718 / 0.540337 (-0.083619) | 0.641383 / 1.386936 (-0.745553) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006546 / 0.011353 (-0.004807) | 0.004059 / 0.011008 (-0.006949) | 0.064523 / 0.038508 (0.026015) | 0.074988 / 0.023109 (0.051878) | 0.388932 / 0.275898 (0.113034) | 0.424496 / 0.323480 (0.101016) | 0.005226 / 0.007986 (-0.002760) | 0.003409 / 0.004328 (-0.000920) | 0.064284 / 0.004250 (0.060034) | 0.056829 / 0.037052 (0.019777) | 0.386457 / 0.258489 (0.127968) | 0.428063 / 0.293841 (0.134222) | 0.031411 / 0.128546 (-0.097136) | 0.008577 / 0.075646 (-0.067070) | 0.070357 / 0.419271 (-0.348915) | 0.048920 / 0.043533 (0.005388) | 0.385197 / 0.255139 (0.130058) | 0.407167 / 0.283200 (0.123967) | 0.024469 / 0.141683 (-0.117214) | 1.482733 / 1.452155 (0.030578) | 1.539027 / 1.492716 (0.046311) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227532 / 0.018006 (0.209526) | 0.448792 / 0.000490 (0.448302) | 0.004139 / 0.000200 (0.003939) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031004 / 0.037411 (-0.006408) | 0.088163 / 0.014526 (0.073637) | 0.101452 / 0.176557 (-0.075105) | 0.152907 / 0.737135 (-0.584229) | 0.102325 / 0.296338 (-0.194014) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418092 / 0.215209 (0.202883) | 4.162277 / 2.077655 (2.084623) | 2.232987 / 1.504120 (0.728867) | 2.143583 / 1.541195 (0.602388) | 2.246142 / 1.468490 (0.777652) | 0.490181 / 4.584777 (-4.094596) | 3.631514 / 3.745712 (-0.114198) | 3.315025 / 5.269862 (-1.954837) | 2.101853 / 4.565676 (-2.463823) | 0.057905 / 0.424275 (-0.366370) | 0.007686 / 0.007607 (0.000079) | 0.489965 / 0.226044 (0.263921) | 4.894375 / 2.268929 (2.625447) | 2.655459 / 55.444624 (-52.789165) | 2.262211 / 6.876477 (-4.614266) | 2.505335 / 2.142072 (0.363263) | 0.591329 / 4.805227 (-4.213898) | 0.133554 / 6.500664 (-6.367110) | 0.061922 / 0.075469 (-0.013547) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.347483 / 1.841788 (-0.494304) | 20.027011 / 8.074308 (11.952703) | 14.430737 / 10.191392 (4.239345) | 0.165767 / 0.680424 (-0.514657) | 0.018460 / 0.534201 (-0.515741) | 0.393790 / 0.579283 (-0.185494) | 0.407213 / 0.434364 (-0.027151) | 0.474459 / 0.540337 (-0.065879) | 0.635054 / 1.386936 (-0.751882) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007652 / 0.011353 (-0.003701) | 0.004581 / 0.011008 (-0.006427) | 0.101629 / 0.038508 (0.063121) | 0.090233 / 0.023109 (0.067124) | 0.392789 / 0.275898 (0.116891) | 0.432163 / 0.323480 (0.108683) | 0.004694 / 0.007986 (-0.003292) | 0.003927 / 0.004328 (-0.000401) | 0.076533 / 0.004250 (0.072282) | 0.064442 / 0.037052 (0.027390) | 0.397539 / 0.258489 (0.139050) | 0.441323 / 0.293841 (0.147482) | 0.036278 / 0.128546 (-0.092268) | 0.009810 / 0.075646 (-0.065836) | 0.343537 / 0.419271 (-0.075734) | 0.060273 / 0.043533 (0.016740) | 0.395023 / 0.255139 (0.139884) | 0.427210 / 0.283200 (0.144011) | 0.031717 / 0.141683 (-0.109966) | 1.771221 / 1.452155 (0.319066) | 1.896336 / 1.492716 (0.403620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235081 / 0.018006 (0.217075) | 0.512781 / 0.000490 (0.512292) | 0.004920 / 0.000200 (0.004721) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033525 / 0.037411 (-0.003887) | 0.104416 / 0.014526 (0.089890) | 0.115695 / 0.176557 (-0.060861) | 0.182216 / 0.737135 (-0.554919) | 0.116259 / 0.296338 (-0.180079) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454817 / 0.215209 (0.239608) | 4.527753 / 2.077655 (2.450098) | 2.222273 / 1.504120 (0.718153) | 2.038448 / 1.541195 (0.497253) | 2.179444 / 1.468490 (0.710953) | 0.573665 / 4.584777 (-4.011112) | 4.504943 / 3.745712 (0.759231) | 3.848435 / 5.269862 (-1.421427) | 2.455185 / 4.565676 (-2.110491) | 0.067985 / 0.424275 (-0.356290) | 0.008719 / 0.007607 (0.001112) | 0.552405 / 0.226044 (0.326360) | 5.515251 / 2.268929 (3.246322) | 2.851557 / 55.444624 (-52.593067) | 2.463070 / 6.876477 (-4.413407) | 2.761596 / 2.142072 (0.619524) | 0.688561 / 4.805227 (-4.116667) | 0.159946 / 6.500664 (-6.340718) | 0.075435 / 0.075469 (-0.000034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.505178 / 1.841788 (-0.336610) | 23.555236 / 8.074308 (15.480928) | 17.272759 / 10.191392 (7.081367) | 0.206495 / 0.680424 (-0.473928) | 0.021869 / 0.534201 (-0.512332) | 0.469271 / 0.579283 (-0.110012) | 0.469200 / 0.434364 (0.034837) | 0.542437 / 0.540337 (0.002100) | 0.792864 / 1.386936 (-0.594072) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008151 / 0.011353 (-0.003202) | 0.004992 / 0.011008 (-0.006016) | 0.079545 / 0.038508 (0.041037) | 0.100234 / 0.023109 (0.077125) | 0.492791 / 0.275898 (0.216893) | 0.511315 / 0.323480 (0.187835) | 0.006878 / 0.007986 (-0.001108) | 0.003807 / 0.004328 (-0.000522) | 0.080876 / 0.004250 (0.076625) | 0.076734 / 0.037052 (0.039681) | 0.518247 / 0.258489 (0.259758) | 0.524202 / 0.293841 (0.230361) | 0.039896 / 0.128546 (-0.088650) | 0.016581 / 0.075646 (-0.059065) | 0.101228 / 0.419271 (-0.318043) | 0.061990 / 0.043533 (0.018457) | 0.490611 / 0.255139 (0.235472) | 0.514930 / 0.283200 (0.231730) | 0.028680 / 0.141683 (-0.113002) | 1.966215 / 1.452155 (0.514061) | 2.047757 / 1.492716 (0.555040) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286807 / 0.018006 (0.268801) | 0.506448 / 0.000490 (0.505959) | 0.005867 / 0.000200 (0.005667) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037141 / 0.037411 (-0.000270) | 0.113232 / 0.014526 (0.098706) | 0.121201 / 0.176557 (-0.055356) | 0.185472 / 0.737135 (-0.551663) | 0.122896 / 0.296338 (-0.173442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.514491 / 0.215209 (0.299282) | 4.942457 / 2.077655 (2.864802) | 2.533519 / 1.504120 (1.029399) | 2.371011 / 1.541195 (0.829817) | 2.495604 / 1.468490 (1.027114) | 0.576224 / 4.584777 (-4.008553) | 4.368584 / 3.745712 (0.622872) | 3.885598 / 5.269862 (-1.384263) | 2.443596 / 4.565676 (-2.122080) | 0.068905 / 0.424275 (-0.355371) | 0.009171 / 0.007607 (0.001564) | 0.584977 / 0.226044 (0.358932) | 5.835220 / 2.268929 (3.566291) | 3.189037 / 55.444624 (-52.255588) | 2.753228 / 6.876477 (-4.123249) | 3.009062 / 2.142072 (0.866990) | 0.690179 / 4.805227 (-4.115048) | 0.157981 / 6.500664 (-6.342683) | 0.074518 / 0.075469 (-0.000951) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599907 / 1.841788 (-0.241880) | 23.853903 / 8.074308 (15.779595) | 17.419796 / 10.191392 (7.228404) | 0.204974 / 0.680424 (-0.475450) | 0.022014 / 0.534201 (-0.512187) | 0.473379 / 0.579283 (-0.105905) | 0.461346 / 0.434364 (0.026982) | 0.564881 / 0.540337 (0.024543) | 0.752933 / 1.386936 (-0.634003) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006547 / 0.011353 (-0.004805) | 0.004020 / 0.011008 (-0.006988) | 0.086828 / 0.038508 (0.048320) | 0.072924 / 0.023109 (0.049815) | 0.312847 / 0.275898 (0.036949) | 0.344605 / 0.323480 (0.021125) | 0.004117 / 0.007986 (-0.003868) | 0.004365 / 0.004328 (0.000037) | 0.066755 / 0.004250 (0.062505) | 0.053248 / 0.037052 (0.016195) | 0.315744 / 0.258489 (0.057255) | 0.362426 / 0.293841 (0.068585) | 0.030732 / 0.128546 (-0.097814) | 0.008516 / 0.075646 (-0.067130) | 0.289927 / 0.419271 (-0.129345) | 0.052115 / 0.043533 (0.008582) | 0.308026 / 0.255139 (0.052887) | 0.343115 / 0.283200 (0.059915) | 0.024131 / 0.141683 (-0.117551) | 1.464290 / 1.452155 (0.012135) | 1.559359 / 1.492716 (0.066642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216744 / 0.018006 (0.198738) | 0.473156 / 0.000490 (0.472666) | 0.004176 / 0.000200 (0.003977) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028500 / 0.037411 (-0.008911) | 0.083892 / 0.014526 (0.069366) | 0.131851 / 0.176557 (-0.044705) | 0.162202 / 0.737135 (-0.574933) | 0.127989 / 0.296338 (-0.168349) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404555 / 0.215209 (0.189346) | 4.035989 / 2.077655 (1.958334) | 2.025174 / 1.504120 (0.521054) | 1.835785 / 1.541195 (0.294590) | 1.909819 / 1.468490 (0.441329) | 0.475352 / 4.584777 (-4.109425) | 3.548055 / 3.745712 (-0.197657) | 3.234782 / 5.269862 (-2.035080) | 2.010305 / 4.565676 (-2.555371) | 0.056507 / 0.424275 (-0.367768) | 0.007259 / 0.007607 (-0.000348) | 0.482021 / 0.226044 (0.255977) | 4.818559 / 2.268929 (2.549631) | 2.528765 / 55.444624 (-52.915860) | 2.159804 / 6.876477 (-4.716673) | 2.380640 / 2.142072 (0.238567) | 0.585005 / 4.805227 (-4.220222) | 0.133811 / 6.500664 (-6.366853) | 0.060686 / 0.075469 (-0.014783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260902 / 1.841788 (-0.580886) | 19.500215 / 8.074308 (11.425907) | 14.164698 / 10.191392 (3.973306) | 0.172492 / 0.680424 (-0.507932) | 0.018221 / 0.534201 (-0.515980) | 0.392609 / 0.579283 (-0.186674) | 0.423265 / 0.434364 (-0.011099) | 0.454705 / 0.540337 (-0.085633) | 0.639856 / 1.386936 (-0.747080) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006656 / 0.011353 (-0.004697) | 0.003903 / 0.011008 (-0.007106) | 0.063780 / 0.038508 (0.025272) | 0.076848 / 0.023109 (0.053739) | 0.379429 / 0.275898 (0.103531) | 0.442554 / 0.323480 (0.119074) | 0.005327 / 0.007986 (-0.002658) | 0.003318 / 0.004328 (-0.001010) | 0.064307 / 0.004250 (0.060056) | 0.057183 / 0.037052 (0.020131) | 0.398163 / 0.258489 (0.139674) | 0.448532 / 0.293841 (0.154691) | 0.031322 / 0.128546 (-0.097224) | 0.008462 / 0.075646 (-0.067184) | 0.070354 / 0.419271 (-0.348917) | 0.048420 / 0.043533 (0.004887) | 0.368304 / 0.255139 (0.113165) | 0.428786 / 0.283200 (0.145587) | 0.023921 / 0.141683 (-0.117762) | 1.499281 / 1.452155 (0.047126) | 1.554448 / 1.492716 (0.061731) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238830 / 0.018006 (0.220824) | 0.464196 / 0.000490 (0.463706) | 0.004812 / 0.000200 (0.004613) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031642 / 0.037411 (-0.005770) | 0.089205 / 0.014526 (0.074679) | 0.101577 / 0.176557 (-0.074980) | 0.154993 / 0.737135 (-0.582142) | 0.102935 / 0.296338 (-0.193403) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415218 / 0.215209 (0.200009) | 4.137711 / 2.077655 (2.060056) | 2.128757 / 1.504120 (0.624637) | 1.961086 / 1.541195 (0.419891) | 2.047552 / 1.468490 (0.579061) | 0.486953 / 4.584777 (-4.097824) | 3.587851 / 3.745712 (-0.157861) | 3.280771 / 5.269862 (-1.989090) | 2.016980 / 4.565676 (-2.548697) | 0.057284 / 0.424275 (-0.366991) | 0.007705 / 0.007607 (0.000097) | 0.492242 / 0.226044 (0.266197) | 4.923213 / 2.268929 (2.654285) | 2.672528 / 55.444624 (-52.772097) | 2.292862 / 6.876477 (-4.583614) | 2.517410 / 2.142072 (0.375337) | 0.614798 / 4.805227 (-4.190429) | 0.149642 / 6.500664 (-6.351023) | 0.062898 / 0.075469 (-0.012571) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.323266 / 1.841788 (-0.518522) | 19.891504 / 8.074308 (11.817196) | 14.115069 / 10.191392 (3.923677) | 0.169859 / 0.680424 (-0.510564) | 0.018538 / 0.534201 (-0.515663) | 0.398456 / 0.579283 (-0.180827) | 0.410111 / 0.434364 (-0.024253) | 0.483198 / 0.540337 (-0.057139) | 0.639283 / 1.386936 (-0.747653) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007731 / 0.011353 (-0.003622) | 0.004064 / 0.011008 (-0.006944) | 0.095261 / 0.038508 (0.056753) | 0.081594 / 0.023109 (0.058485) | 0.390413 / 0.275898 (0.114515) | 0.415542 / 0.323480 (0.092063) | 0.006031 / 0.007986 (-0.001954) | 0.003817 / 0.004328 (-0.000512) | 0.066381 / 0.004250 (0.062131) | 0.058262 / 0.037052 (0.021210) | 0.383626 / 0.258489 (0.125137) | 0.443237 / 0.293841 (0.149396) | 0.034358 / 0.128546 (-0.094188) | 0.010002 / 0.075646 (-0.065644) | 0.317472 / 0.419271 (-0.101800) | 0.057428 / 0.043533 (0.013895) | 0.393929 / 0.255139 (0.138790) | 0.444572 / 0.283200 (0.161373) | 0.026295 / 0.141683 (-0.115388) | 1.603639 / 1.452155 (0.151484) | 1.707750 / 1.492716 (0.215034) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222171 / 0.018006 (0.204165) | 0.491762 / 0.000490 (0.491272) | 0.003389 / 0.000200 (0.003189) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029420 / 0.037411 (-0.007991) | 0.086201 / 0.014526 (0.071676) | 0.100150 / 0.176557 (-0.076406) | 0.162338 / 0.737135 (-0.574797) | 0.099349 / 0.296338 (-0.196989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445976 / 0.215209 (0.230767) | 4.460197 / 2.077655 (2.382542) | 2.211767 / 1.504120 (0.707647) | 1.988740 / 1.541195 (0.447545) | 2.052289 / 1.468490 (0.583799) | 0.570321 / 4.584777 (-4.014456) | 4.148777 / 3.745712 (0.403065) | 3.750977 / 5.269862 (-1.518885) | 2.309443 / 4.565676 (-2.256234) | 0.064552 / 0.424275 (-0.359724) | 0.008167 / 0.007607 (0.000560) | 0.523283 / 0.226044 (0.297238) | 5.349347 / 2.268929 (3.080419) | 2.710292 / 55.444624 (-52.734332) | 2.344252 / 6.876477 (-4.532225) | 2.549903 / 2.142072 (0.407831) | 0.665942 / 4.805227 (-4.139285) | 0.154108 / 6.500664 (-6.346556) | 0.070181 / 0.075469 (-0.005289) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455733 / 1.841788 (-0.386054) | 21.846958 / 8.074308 (13.772650) | 15.133865 / 10.191392 (4.942473) | 0.199009 / 0.680424 (-0.481415) | 0.021299 / 0.534201 (-0.512902) | 0.421555 / 0.579283 (-0.157729) | 0.437639 / 0.434364 (0.003275) | 0.498568 / 0.540337 (-0.041769) | 0.719649 / 1.386936 (-0.667287) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007858 / 0.011353 (-0.003495) | 0.004629 / 0.011008 (-0.006380) | 0.075701 / 0.038508 (0.037193) | 0.084425 / 0.023109 (0.061316) | 0.436650 / 0.275898 (0.160752) | 0.466046 / 0.323480 (0.142566) | 0.006042 / 0.007986 (-0.001944) | 0.003834 / 0.004328 (-0.000495) | 0.074729 / 0.004250 (0.070478) | 0.065983 / 0.037052 (0.028931) | 0.447239 / 0.258489 (0.188750) | 0.466728 / 0.293841 (0.172887) | 0.035814 / 0.128546 (-0.092733) | 0.009919 / 0.075646 (-0.065727) | 0.081151 / 0.419271 (-0.338120) | 0.057256 / 0.043533 (0.013723) | 0.435609 / 0.255139 (0.180470) | 0.448901 / 0.283200 (0.165701) | 0.026325 / 0.141683 (-0.115357) | 1.745658 / 1.452155 (0.293503) | 1.804137 / 1.492716 (0.311421) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302551 / 0.018006 (0.284544) | 0.498438 / 0.000490 (0.497948) | 0.038562 / 0.000200 (0.038362) | 0.000411 / 0.000054 (0.000356) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035573 / 0.037411 (-0.001839) | 0.104957 / 0.014526 (0.090431) | 0.117208 / 0.176557 (-0.059349) | 0.178935 / 0.737135 (-0.558200) | 0.124577 / 0.296338 (-0.171761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467076 / 0.215209 (0.251867) | 4.698852 / 2.077655 (2.621197) | 2.453389 / 1.504120 (0.949269) | 2.257378 / 1.541195 (0.716183) | 2.338615 / 1.468490 (0.870125) | 0.542379 / 4.584777 (-4.042398) | 4.066895 / 3.745712 (0.321183) | 3.689540 / 5.269862 (-1.580321) | 2.268997 / 4.565676 (-2.296679) | 0.064754 / 0.424275 (-0.359521) | 0.008866 / 0.007607 (0.001259) | 0.546732 / 0.226044 (0.320687) | 5.487765 / 2.268929 (3.218836) | 2.974126 / 55.444624 (-52.470498) | 2.585492 / 6.876477 (-4.290985) | 2.754417 / 2.142072 (0.612345) | 0.652045 / 4.805227 (-4.153183) | 0.145597 / 6.500664 (-6.355067) | 0.065415 / 0.075469 (-0.010054) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553970 / 1.841788 (-0.287818) | 22.300954 / 8.074308 (14.226646) | 15.640990 / 10.191392 (5.449598) | 0.170903 / 0.680424 (-0.509521) | 0.021750 / 0.534201 (-0.512451) | 0.455316 / 0.579283 (-0.123967) | 0.455051 / 0.434364 (0.020687) | 0.536174 / 0.540337 (-0.004164) | 0.735930 / 1.386936 (-0.651006) |\n\n</details>\n</details>\n\n\n"
] | "2023-07-31T11:44:46" | "2023-08-01T10:48:52" | "2023-08-01T10:38:54" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6105.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6105",
"merged_at": "2023-08-01T10:38:54Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6105.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6105"
} | Fix `resolve_pattern` for filesystems with tuple protocol.
Fix #6100.
The bug code lines were introduced by:
- #6028 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6105/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6105/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6104 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6104/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6104/comments | https://api.github.com/repos/huggingface/datasets/issues/6104/events | https://github.com/huggingface/datasets/issues/6104 | 1,828,959,107 | I_kwDODunzps5tA7OD | 6,104 | HF Datasets data access is extremely slow even when in memory | {
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NightMachinery",
"id": 36224762,
"login": "NightMachinery",
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NightMachinery"
} | [] | open | false | null | [] | null | [
"Possibly related:\r\n- https://github.com/pytorch/pytorch/issues/22462"
] | "2023-07-31T11:12:19" | "2023-08-01T11:22:43" | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Doing a simple `some_dataset[:10]` can take more than a minute.
Profiling it:
<img width="1280" alt="image" src="https://github.com/huggingface/datasets/assets/36224762/e641fb95-ff02-4072-9016-5416a65f75ab">
`some_dataset` is completely in memory with no disk cache.
This is proving fatal to my usage of HF Datasets. Is there a way I can forgo the arrow format and store the dataset as PyTorch tensors so that `_tensorize` is not needed? And is `_consolidate` supposed to take this long?
It's faster to produce the dataset from scratch than to access it from HF Datasets!
### Steps to reproduce the bug
I have uploaded the dataset that causes this problem [here](https://huggingface.co/datasets/NightMachinery/hf_datasets_bug1).
```python
#!/usr/bin/env python3
import sys
import time
import torch
from datasets import load_dataset
def main(dataset_name):
# Start the timer
start_time = time.time()
# Load the dataset from Hugging Face Hub
dataset = load_dataset(dataset_name)
# Set the dataset format as torch
dataset.set_format(type="torch")
# Perform an identity map
dataset = dataset.map(lambda example: example, batched=True, batch_size=20)
# End the timer
end_time = time.time()
# Print the time taken
print(f"Time taken: {end_time - start_time:.2f} seconds")
if __name__ == "__main__":
dataset_name = "NightMachinery/hf_datasets_bug1"
print(f"dataset_name: {dataset_name}")
main(dataset_name)
```
### Expected behavior
_
### Environment info
- `datasets` version: 2.13.1
- Platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.35
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6104/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6104/timeline | null | null | false |
End of preview. Expand
in Data Studio
- Downloads last month
- 39