python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
from setuptools import setup, find_packages setup( name = 'Mega-pytorch', packages = find_packages(exclude=[]), version = '0.1.0', license='MIT', description = 'Mega - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/Mega-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'attention mechanism', 'exponential moving average', 'long range arena' ], install_requires=[ 'einops>=0.4', 'scipy', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
Mega-pytorch-main
setup.py
from mega_pytorch.mega_pytorch import Mega from mega_pytorch.autoregressive_wrapper import AutoregressiveWrapper import argparse import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 512 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = Mega( num_tokens = 256, dim = 512, depth = 8 ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: x = np.array(np.frombuffer(file.read(int(95e6)), dtype = np.uint8)) train_x, valid_x = np.split(x, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f"\n\n {prime} \n\n {'-' * 80} \n") sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str + "\n\n")
Mega-pytorch-main
train.py
import math from functools import partial import torch import torch.nn.functional as F from torch import nn, einsum from torch.fft import rfft, irfft from einops import rearrange from einops.layers.torch import Rearrange from scipy.fftpack import next_fast_len # functions def exists(val): return val is not None def identity(t, *args, **kwargs): return t def default(val, d): return val if exists(val) else d def append_dims(x, num_dims): if num_dims <= 0: return x return x.view(*x.shape, *((1,) * num_dims)) def conv1d_fft(x, weights, dim = -2, weight_dim = -1): # O(N log(N)) 1d convolution using some fourier trick assert weight_dim >= dim N = x.shape[dim] M = weights.shape[weight_dim] fast_len = next_fast_len(N + M - 1) f_x = rfft(x, n = fast_len, dim = dim) f_weight = rfft(weights, n = fast_len, dim = weight_dim) f_v_weight = f_x * append_dims(f_weight.conj(), weight_dim - dim) out = irfft(f_v_weight, fast_len, dim = dim) out = out.roll(-1, dims = (dim,)) indices = torch.arange(start = fast_len - N, end = fast_len, dtype = torch.long, device = x.device) out = out.index_select(dim, indices) return out # positional bias for single-headed attention class T5RelativePositionBias(nn.Module): def __init__( self, scale, causal = False, num_buckets = 32, max_distance = 128 ): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, 1) @staticmethod def _relative_position_bucket( relative_position, causal = True, num_buckets = 32, max_distance = 128 ): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, x): i, j, device = *x.shape[-2:], x.device q_pos = torch.arange(i, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j 1 -> i j') return bias * self.scale # classes class LaplacianAttnFn(nn.Module): def forward(self, x): mu = math.sqrt(0.5) std = math.sqrt((4 * math.pi) ** -1) return (1 + torch.special.erf((x - mu) / (std * math.sqrt(2)))) * 0.5 class OffsetScale(nn.Module): def __init__(self, dim, heads = 1): super().__init__() self.gamma = nn.Parameter(torch.ones(heads, dim)) self.beta = nn.Parameter(torch.zeros(heads, dim)) nn.init.normal_(self.gamma, std = 0.02) def forward(self, x): out = einsum('... d, h d -> ... h d', x, self.gamma) + self.beta return out.unbind(dim = -2) class SingleHeadedAttention(nn.Module): def __init__( self, *, dim, dim_qk, dim_value, causal = False, laplacian_attn_fn = False ): super().__init__() self.causal = causal self.laplacian_attn_fn = laplacian_attn_fn self.attn_fn = partial(F.softmax, dim = -1) if not laplacian_attn_fn else LaplacianAttnFn() self.rel_pos_bias = T5RelativePositionBias(causal = causal, scale = dim_qk ** 0.5) self.to_qk = nn.Sequential( nn.Linear(dim, dim_qk), nn.SiLU() ) self.offsetscale = OffsetScale(dim_qk, heads = 2) self.to_v = nn.Sequential( nn.Linear(dim, dim_value), nn.SiLU() ) def forward(self, x, v_input = None): seq_len, dim, device, dtype = *x.shape[-2:], x.device, x.dtype v_input = default(v_input, x) qk, v = self.to_qk(x), self.to_v(v_input) q, k = self.offsetscale(qk) scale = (seq_len ** -1) if self.laplacian_attn_fn else (dim ** -0.5) sim = einsum('b i d, b j d -> b i j', q, k) * scale sim = sim + self.rel_pos_bias(sim) if self.causal: causal_mask = torch.ones((seq_len, seq_len), device = device, dtype = torch.bool).triu(1) if self.causal and not self.laplacian_attn_fn: # is softmax attention and using large negative value pre-softmax sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) attn = self.attn_fn(sim) if self.causal and self.laplacian_attn_fn: # if using laplacian attention function, zero out upper triangular with 0s attn = attn.masked_fill(causal_mask, 0.) return einsum('b i j, b j d -> b i d', attn, v) class MultiHeadedEMA(nn.Module): def __init__( self, *, dim, heads, bidirectional = False, norm_mhesa_heads = False ): super().__init__() self.bidirectional = bidirectional self.expansion = nn.Parameter(torch.randn(heads * (2 if bidirectional else 1), dim)) self.reduction = nn.Parameter(torch.randn(heads * (2 if bidirectional else 1), dim)) # learned alpha and dampening factors self.alphas = nn.Parameter(torch.randn(heads)) self.dampen_factors = nn.Parameter(torch.randn(heads)) if bidirectional: self.reverse_alphas = nn.Parameter(torch.randn(heads)) self.reverse_dampen_factors = nn.Parameter(torch.randn(heads)) self.heads = heads self.norm_heads = nn.Identity() if norm_mhesa_heads: # https://arxiv.org/abs/2210.06423 - retnet used sub-ln with some success as groupnorm self.norm_heads = nn.Sequential( Rearrange('b n h d -> b (h d) n'), nn.GroupNorm(heads, dim * heads), Rearrange('b (h d) n -> b n h d', h = heads) ) def forward(self, x): device, seq_len = x.device, x.shape[1] # project in and split heads x = einsum('... d, h d -> ... h d', x, self.expansion) if self.bidirectional: x, x_reversed = x.chunk(2, dim = -2) x_reversed = torch.flip(x_reversed, dims = (1,)) # weights derived from alphas (learned exponential smoothing decay rate) def apply_learned_ema_with_damping(x, alphas, dampen_factors): alphas = alphas.sigmoid() dampen_factors = dampen_factors.sigmoid() reversed_powers = torch.arange(seq_len - 1, -1, -1, device = device) K = alphas * (((1 - alphas) * dampen_factors) ** rearrange(reversed_powers, '... l -> ... l 1')) # conv1d fft O(nlog(n)) return conv1d_fft(x, K, dim = -3, weight_dim = -2) x = apply_learned_ema_with_damping(x, self.alphas, self.dampen_factors) if self.bidirectional: x_reversed = apply_learned_ema_with_damping(x_reversed, self.reverse_alphas, self.reverse_dampen_factors) x_reversed = torch.flip(x_reversed, dims = (1,)) x = torch.cat((x, x_reversed), dim = -2) # maybe norm heads x = self.norm_heads(x) # combine heads and out return einsum('... h d, h d -> ... d', x, self.reduction) # Mega Layer # Single headed Attention + Multi-headed EMA, then GRU-esque gating class MegaLayer(nn.Module): def __init__( self, *, dim = 128, ema_heads = 16, attn_dim_qk = 64, attn_dim_value = 256, laplacian_attn_fn = False, causal = True, norm_mhesa_heads = False ): super().__init__() self.single_headed_attn = SingleHeadedAttention( dim = dim, dim_qk = attn_dim_qk, dim_value = attn_dim_value, causal = causal, laplacian_attn_fn = laplacian_attn_fn ) self.multi_headed_ema = MultiHeadedEMA( dim = dim, heads = ema_heads, bidirectional = not causal, norm_mhesa_heads = norm_mhesa_heads ) self.to_reset_gate = nn.Sequential( nn.Linear(dim, attn_dim_value), nn.SiLU() ) self.to_update_gate = nn.Sequential( nn.Linear(dim, dim), nn.Sigmoid() ) # equation 14, for calculating H self.Wh = nn.Parameter(torch.randn(dim, dim)) self.Uh = nn.Parameter(torch.randn(attn_dim_value, dim)) self.bh = nn.Parameter(torch.randn(dim)) def forward(self, x, residual = None): residual = default(residual, x) ema_output = self.multi_headed_ema(x) attn_output = self.single_headed_attn(ema_output, x) reset_gate = self.to_reset_gate(ema_output) update_gate = self.to_update_gate(ema_output) gated_attn_output = attn_output * reset_gate # equation 14 H = F.silu(ema_output @ self.Wh + gated_attn_output @ self.Uh + self.bh) # update gate return update_gate * H + (1 - update_gate) * residual # Mega def FeedForward(dim, ff_mult): dim_hidden = int(dim * ff_mult) return nn.Sequential( nn.Linear(dim, dim_hidden), nn.GELU(), nn.Linear(dim_hidden, dim) ) class Mega(nn.Module): def __init__( self, *, dim, num_tokens, depth, ff_mult = 2, pre_norm = False, **kwargs ): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) self.pre_norm = pre_norm self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ MegaLayer(dim = dim, **kwargs), nn.LayerNorm(dim), FeedForward(dim = dim, ff_mult = ff_mult), nn.LayerNorm(dim) ])) self.to_logits = nn.Sequential( nn.LayerNorm(dim) if pre_norm else nn.Identity(), nn.Linear(dim, num_tokens) ) def forward(self, x): pre_norm = self.pre_norm post_norm = not self.pre_norm x = self.token_emb(x) for mega_layer, mega_norm, ff, ff_norm in self.layers: mega_maybe_prenorm = mega_norm if pre_norm else identity ff_maybe_prenorm = ff_norm if pre_norm else identity mega_maybe_postnorm = mega_norm if post_norm else identity ff_maybe_postnorm = ff_norm if post_norm else identity x = mega_layer(mega_maybe_prenorm(x), x) x = mega_maybe_postnorm(x) x = ff(ff_maybe_prenorm(x)) + x x = ff_maybe_postnorm(x) return self.to_logits(x)
Mega-pytorch-main
mega_pytorch/mega_pytorch.py
import torch from torch import nn import torch.nn.functional as F from einops import rearrange # helper function def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, pad_value = 0): super().__init__() self.pad_value = pad_value self.net = net @torch.no_grad() @eval_decorator def generate(self, start_tokens, seq_len, temperature = 1., filter_thres = 0.9, **kwargs): b, t, device = *start_tokens.shape, start_tokens.device out = start_tokens for _ in range(seq_len): logits = self.net(out, **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) out = out[:, t:] return out def forward(self, x, **kwargs): x_inp, x_labels = x[:, :-1], x[:, 1:] logits = self.net(x_inp, **kwargs) return F.cross_entropy(rearrange(logits, 'b c n -> b n c'), x_labels)
Mega-pytorch-main
mega_pytorch/autoregressive_wrapper.py
from mega_pytorch.mega_pytorch import MegaLayer, Mega, MultiHeadedEMA
Mega-pytorch-main
mega_pytorch/__init__.py
import sys from setuptools import setup, find_packages sys.path[0:0] = ['deep_daze'] from version import __version__ setup( name = 'deep-daze', packages = find_packages(), include_package_data = True, entry_points={ 'console_scripts': [ 'imagine = deep_daze.cli:main', ], }, version = __version__, license='MIT', description = 'Deep Daze', author = 'Ryan Murdock, Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/deep-daze', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'implicit neural representations', 'text to image' ], install_requires=[ 'einops>=0.3', 'fire', 'ftfy', 'imageio>=2.9.0', 'siren-pytorch>=0.0.8', 'torch>=1.10', 'torch_optimizer', 'torchvision>=0.8.2', 'tqdm', 'regex' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
deep-daze-main
setup.py
__version__ = '0.11.1'
deep-daze-main
deep_daze/version.py
from deep_daze.deep_daze import DeepDaze, Imagine
deep-daze-main
deep_daze/__init__.py
import sys import fire from deep_daze import Imagine def train( text=None, img=None, learning_rate=1e-5, num_layers=16, hidden_size=256, batch_size=4, gradient_accumulate_every=4, epochs=20, iterations=1050, save_every=100, image_width=512, deeper=False, overwrite=False, save_progress=True, seed=None, open_folder=True, save_date_time=False, start_image_path=None, start_image_train_iters=50, theta_initial=None, theta_hidden=None, start_image_lr=3e-4, lower_bound_cutout=0.1, upper_bound_cutout=1.0, saturate_bound=False, create_story=False, story_start_words=5, story_words_per_epoch=5, story_separator=None, averaging_weight=0.3, gauss_sampling=False, gauss_mean=0.6, gauss_std=0.2, do_cutout=True, center_bias=False, center_focus=2, jit=True, save_gif=False, save_video=False, model_name="ViT-B/32", optimizer="AdamP" ): """ :param text: (required) A phrase less than 77 tokens which you would like to visualize. :param img: The path to a jpg or png image which you would like to imagine. Can be combined with text. :param learning_rate: The learning rate of the neural net. :param hidden_size: The hidden layer size of the Siren net. :param num_layers: The number of hidden layers to use in the Siren neural net. :param batch_size: The number of generated images to pass into Siren before calculating loss. Decreasing this can lower memory and accuracy. :param gradient_accumulate_every: Calculate a weighted loss of n samples for each iteration. Increasing this can help increase accuracy with lower batch sizes. :param epochs: The number of epochs to run. :param iterations: The number of times to calculate and backpropagate loss in a given epoch. :param save_progress: Whether or not to save images generated before training Siren is complete. :param save_every: Generate an image every time iterations is a multiple of this number. :param open_folder: Whether or not to open a folder showing your generated images. :param overwrite: Whether or not to overwrite existing generated images of the same name. :param deeper: Uses a Siren neural net with 32 hidden layers. :param image_width: The desired resolution of the image. :param seed: A seed to be used for deterministic runs. :param save_date_time: Save files with a timestamp prepended e.g. `%y%m%d-%H%M%S-my_phrase_here.png` :param start_image_path: Path to the image you would like to prime the generator with initially :param start_image_train_iters: Number of iterations for priming, defaults to 50 :param theta_initial: Hyperparameter describing the frequency of the color space. Only applies to the first layer of the network. :param theta_hidden: Hyperparameter describing the frequency of the color space. Only applies to the hidden layers of the network. :param start_image_lr: Learning rate for the start image training. :param upper_bound_cutout: The upper bound for the cutouts used in generation. :param lower_bound_cutout: The lower bound for the cutouts used in generation. :param saturate_bound: If True, the LOWER_BOUND_CUTOUT is linearly increased to 0.75 during training. :param create_story: Creates a story by optimizing each epoch on a new sliding-window of the input words. If this is enabled, much longer texts than 77 tokens can be used. Requires save_progress to visualize the transitions of the story. :param story_start_words: Only used if create_story is True. How many words to optimize on for the first epoch. :param story_words_per_epoch: Only used if create_story is True. How many words to add to the optimization goal per epoch after the first one. :param story_separator: Only used if create_story is True. Defines a separator like '.' that splits the text into groups for each epoch. Separator needs to be in the text otherwise it will be ignored! :param averaging_weight: How much to weigh the averaged features of the random cutouts over the individual random cutouts. Increasing this value leads to more details being represented at the cost of some global coherence and a parcellation into smaller scenes. :param gauss_sampling: Whether to use sampling from a Gaussian distribution instead of a uniform distribution. :param gauss_mean: The mean of the Gaussian sampling distribution. :param gauss_std: The standard deviation of the Gaussian sampling distribution. :param do_cutouts: Whether to use random cutouts as an augmentation. This basically needs to be turned on unless some new augmentations are added in code eventually. :param center_bias: Whether to use a Gaussian distribution centered around the center of the image to sample the locations of random cutouts instead of a uniform distribution. Leads to the main generated objects to be more focused in the center. :param center_focus: How much to focus on the center if using center_bias. std = sampling_range / center_focus. High values lead to a very correct representation in the center but washed out colors and details towards the edges, :param jit: Whether to use the jit-compiled CLIP model. The jit model is faster, but only compatible with torch version 1.7.1. :param save_gif: Only used if save_progress is True. Saves a GIF animation of the generation procedure using the saved frames. :param save_video: Only used if save_progress is True. Saves a MP4 animation of the generation procedure using the saved frames. """ # Don't instantiate imagine if the user just wants help. if any("--help" in arg for arg in sys.argv): print("Type `imagine --help` for usage info.") sys.exit() num_layers = 32 if deeper else num_layers imagine = Imagine( text=text, img=img, lr=learning_rate, num_layers=num_layers, batch_size=batch_size, gradient_accumulate_every=gradient_accumulate_every, epochs=epochs, iterations=iterations, image_width=image_width, save_every=save_every, save_progress=save_progress, seed=seed, open_folder=open_folder, save_date_time=save_date_time, start_image_path=start_image_path, start_image_train_iters=start_image_train_iters, theta_initial=theta_initial, theta_hidden=theta_hidden, start_image_lr=start_image_lr, lower_bound_cutout=lower_bound_cutout, upper_bound_cutout=upper_bound_cutout, saturate_bound=saturate_bound, create_story=create_story, story_start_words=story_start_words, story_words_per_epoch=story_words_per_epoch, story_separator=story_separator, averaging_weight=averaging_weight, gauss_sampling=gauss_sampling, gauss_mean=gauss_mean, gauss_std=gauss_std, do_cutout=do_cutout, center_bias=center_bias, center_focus=center_focus, jit=jit, hidden_size=hidden_size, model_name=model_name, optimizer=optimizer, save_gif=save_gif, save_video=save_video, ) print('Starting up...') if not overwrite and imagine.filename.exists(): answer = input('Imagined image already exists, do you want to overwrite? (y/n) ').lower() if answer not in ('yes', 'y'): sys.exit() imagine() def main(): fire.Fire(train)
deep-daze-main
deep_daze/cli.py
import os import subprocess import sys import random from datetime import datetime from pathlib import Path import torch import torch.nn.functional as F from siren_pytorch import SirenNet, SirenWrapper from torch import nn from torch.cuda.amp import GradScaler, autocast from torch_optimizer import DiffGrad, AdamP import numpy as np from PIL import Image from imageio import imread, mimsave import torchvision.transforms as T from tqdm import trange, tqdm from .clip import load, tokenize # Helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def interpolate(image, size): return F.interpolate(image, (size, size), mode='bilinear', align_corners=False) def rand_cutout(image, size, center_bias=False, center_focus=2): width = image.shape[-1] min_offset = 0 max_offset = width - size if center_bias: # sample around image center center = max_offset / 2 std = center / center_focus offset_x = int(random.gauss(mu=center, sigma=std)) offset_y = int(random.gauss(mu=center, sigma=std)) # resample uniformly if over boundaries offset_x = random.randint(min_offset, max_offset) if (offset_x > max_offset or offset_x < min_offset) else offset_x offset_y = random.randint(min_offset, max_offset) if (offset_y > max_offset or offset_y < min_offset) else offset_y else: offset_x = random.randint(min_offset, max_offset) offset_y = random.randint(min_offset, max_offset) cutout = image[:, :, offset_x:offset_x + size, offset_y:offset_y + size] return cutout def create_clip_img_transform(image_width): clip_mean = [0.48145466, 0.4578275, 0.40821073] clip_std = [0.26862954, 0.26130258, 0.27577711] transform = T.Compose([ #T.ToPILImage(), T.Resize(image_width), T.CenterCrop((image_width, image_width)), T.ToTensor(), T.Normalize(mean=clip_mean, std=clip_std) ]) return transform def open_folder(path): if os.path.isfile(path): path = os.path.dirname(path) if not os.path.isdir(path): return cmd_list = None if sys.platform == 'darwin': cmd_list = ['open', '--', path] elif sys.platform == 'linux2' or sys.platform == 'linux': cmd_list = ['xdg-open', path] elif sys.platform in ['win32', 'win64']: cmd_list = ['explorer', path.replace('/', '\\')] if cmd_list is None: return try: subprocess.check_call(cmd_list) except subprocess.CalledProcessError: pass except OSError: pass def norm_siren_output(img): return ((img + 1) * 0.5).clamp(0.0, 1.0) def create_text_path(context_length, text=None, img=None, encoding=None, separator=None): if text is not None: if separator is not None and separator in text: #Reduces filename to first epoch text text = text[:text.index(separator, )] input_name = text.replace(" ", "_")[:context_length] elif img is not None: if isinstance(img, str): input_name = "".join(img.replace(" ", "_").split(".")[:-1]) else: input_name = "PIL_img" else: input_name = "your_encoding" return input_name class DeepDaze(nn.Module): def __init__( self, clip_perceptor, clip_norm, input_res, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, theta_initial=None, theta_hidden=None, lower_bound_cutout=0.1, # should be smaller than 0.8 upper_bound_cutout=1.0, saturate_bound=False, gauss_sampling=False, gauss_mean=0.6, gauss_std=0.2, do_cutout=True, center_bias=False, center_focus=2, hidden_size=256, averaging_weight=0.3, ): super().__init__() # load clip self.perceptor = clip_perceptor self.input_resolution = input_res self.normalize_image = clip_norm self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 w0 = default(theta_hidden, 30.) w0_initial = default(theta_initial, 30.) siren = SirenNet( dim_in=2, dim_hidden=hidden_size, num_layers=num_layers, dim_out=3, use_bias=True, w0=w0, w0_initial=w0_initial ) self.model = SirenWrapper( siren, image_width=image_width, image_height=image_width ) self.saturate_bound = saturate_bound self.saturate_limit = 0.75 # cutouts above this value lead to destabilization self.lower_bound_cutout = lower_bound_cutout self.upper_bound_cutout = upper_bound_cutout self.gauss_sampling = gauss_sampling self.gauss_mean = gauss_mean self.gauss_std = gauss_std self.do_cutout = do_cutout self.center_bias = center_bias self.center_focus = center_focus self.averaging_weight = averaging_weight def sample_sizes(self, lower, upper, width, gauss_mean): if self.gauss_sampling: gauss_samples = torch.zeros(self.batch_size).normal_(mean=gauss_mean, std=self.gauss_std) outside_bounds_mask = (gauss_samples > upper) | (gauss_samples < upper) gauss_samples[outside_bounds_mask] = torch.zeros((len(gauss_samples[outside_bounds_mask]),)).uniform_(lower, upper) sizes = (gauss_samples * width).int() else: lower *= width upper *= width sizes = torch.randint(int(lower), int(upper), (self.batch_size,)) return sizes def forward(self, text_embed, return_loss=True, dry_run=False): out = self.model() out = norm_siren_output(out) if not return_loss: return out # determine upper and lower sampling bound width = out.shape[-1] lower_bound = self.lower_bound_cutout if self.saturate_bound: progress_fraction = self.num_batches_processed / self.total_batches lower_bound += (self.saturate_limit - self.lower_bound_cutout) * progress_fraction # sample cutout sizes between lower and upper bound sizes = self.sample_sizes(lower_bound, self.upper_bound_cutout, width, self.gauss_mean) # create normalized random cutouts if self.do_cutout: image_pieces = [rand_cutout(out, size, center_bias=self.center_bias, center_focus=self.center_focus) for size in sizes] image_pieces = [interpolate(piece, self.input_resolution) for piece in image_pieces] else: image_pieces = [interpolate(out.clone(), self.input_resolution) for _ in sizes] # normalize image_pieces = torch.cat([self.normalize_image(piece) for piece in image_pieces]) # calc image embedding with autocast(enabled=False): image_embed = self.perceptor.encode_image(image_pieces) # calc loss # loss over averaged features of cutouts avg_image_embed = image_embed.mean(dim=0).unsqueeze(0) averaged_loss = -self.loss_coef * torch.cosine_similarity(text_embed, avg_image_embed, dim=-1).mean() # loss over all cutouts general_loss = -self.loss_coef * torch.cosine_similarity(text_embed, image_embed, dim=-1).mean() # merge losses loss = averaged_loss * (self.averaging_weight) + general_loss * (1 - self.averaging_weight) # count batches if not dry_run: self.num_batches_processed += self.batch_size return out, loss class Imagine(nn.Module): def __init__( self, *, text=None, img=None, clip_encoding=None, lr=1e-5, batch_size=4, gradient_accumulate_every=4, save_every=100, image_width=512, num_layers=16, epochs=20, iterations=1050, save_progress=True, seed=None, open_folder=True, save_date_time=False, start_image_path=None, start_image_train_iters=10, start_image_lr=3e-4, theta_initial=None, theta_hidden=None, model_name="ViT-B/32", lower_bound_cutout=0.1, # should be smaller than 0.8 upper_bound_cutout=1.0, saturate_bound=False, averaging_weight=0.3, create_story=False, story_start_words=5, story_words_per_epoch=5, story_separator=None, gauss_sampling=False, gauss_mean=0.6, gauss_std=0.2, do_cutout=True, center_bias=False, center_focus=2, optimizer="AdamP", jit=True, hidden_size=256, save_gif=False, save_video=False, ): super().__init__() if exists(seed): tqdm.write(f'setting seed: {seed}') torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True # fields for story creation: self.create_story = create_story self.words = None self.separator = str(story_separator) if story_separator is not None else None if self.separator is not None and text is not None: #exit if text is just the separator if str(text).replace(' ','').replace(self.separator,'') == '': print('Exiting because the text only consists of the separator! Needs words or phrases that are separated by the separator.') exit() #adds a space to each separator and removes double spaces that might be generated text = text.replace(self.separator,self.separator+' ').replace(' ',' ').strip() self.all_words = text.split(" ") if text is not None else None self.num_start_words = story_start_words self.words_per_epoch = story_words_per_epoch if create_story: assert text is not None, "We need text input to create a story..." # overwrite epochs to match story length num_words = len(self.all_words) self.epochs = 1 + (num_words - self.num_start_words) / self.words_per_epoch # add one epoch if not divisible self.epochs = int(self.epochs) if int(self.epochs) == self.epochs else int(self.epochs) + 1 if self.separator is not None: if self.separator not in text: print("Separator '"+self.separator+"' will be ignored since not in text!") self.separator = None else: self.epochs = len(list(filter(None,text.split(self.separator)))) print("Running for", self.epochs, "epochs" + (" (split with '"+self.separator+"' as the separator)" if self.separator is not None else "")) else: self.epochs = epochs # jit models only compatible with version 1.7.1 if "1.7.1" not in torch.__version__: if jit == True: print("Setting jit to False because torch version is not 1.7.1.") jit = False # Load CLIP self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") clip_perceptor, norm = load(model_name, jit=jit, device=self.device) self.perceptor = clip_perceptor.eval() for param in self.perceptor.parameters(): param.requires_grad = False if jit == False: input_res = clip_perceptor.visual.input_resolution else: input_res = clip_perceptor.input_resolution.item() self.clip_transform = create_clip_img_transform(input_res) self.iterations = iterations self.image_width = image_width total_batches = self.epochs * self.iterations * batch_size * gradient_accumulate_every model = DeepDaze( self.perceptor, norm, input_res, total_batches, batch_size=batch_size, image_width=image_width, num_layers=num_layers, theta_initial=theta_initial, theta_hidden=theta_hidden, lower_bound_cutout=lower_bound_cutout, upper_bound_cutout=upper_bound_cutout, saturate_bound=saturate_bound, gauss_sampling=gauss_sampling, gauss_mean=gauss_mean, gauss_std=gauss_std, do_cutout=do_cutout, center_bias=center_bias, center_focus=center_focus, hidden_size=hidden_size, averaging_weight=averaging_weight, ).to(self.device) self.model = model self.scaler = GradScaler() siren_params = model.model.parameters() if optimizer == "AdamP": self.optimizer = AdamP(siren_params, lr) elif optimizer == "Adam": self.optimizer = torch.optim.Adam(siren_params, lr) elif optimizer == "DiffGrad": self.optimizer = DiffGrad(siren_params, lr) self.gradient_accumulate_every = gradient_accumulate_every self.save_every = save_every self.save_date_time = save_date_time self.open_folder = open_folder self.save_progress = save_progress self.text = text self.image = img self.textpath = create_text_path(self.perceptor.context_length, text=text, img=img, encoding=clip_encoding, separator=story_separator) self.filename = self.image_output_path() # create coding to optimize for self.clip_encoding = self.create_clip_encoding(text=text, img=img, encoding=clip_encoding) self.start_image = None self.start_image_train_iters = start_image_train_iters self.start_image_lr = start_image_lr if exists(start_image_path): file = Path(start_image_path) assert file.exists(), f'file does not exist at given starting image path {start_image_path}' image = Image.open(str(file)) start_img_transform = T.Compose([T.Resize(image_width), T.CenterCrop((image_width, image_width)), T.ToTensor()]) image_tensor = start_img_transform(image).unsqueeze(0).to(self.device) self.start_image = image_tensor self.save_gif = save_gif self.save_video = save_video def create_clip_encoding(self, text=None, img=None, encoding=None): self.text = text self.img = img if encoding is not None: encoding = encoding.to(self.device) elif self.create_story: encoding = self.update_story_encoding(epoch=0, iteration=1) elif text is not None and img is not None: encoding = (self.create_text_encoding(text) + self.create_img_encoding(img)) / 2 elif text is not None: encoding = self.create_text_encoding(text) elif img is not None: encoding = self.create_img_encoding(img) return encoding def create_text_encoding(self, text): tokenized_text = tokenize(text).to(self.device) with torch.no_grad(): text_encoding = self.perceptor.encode_text(tokenized_text).detach() return text_encoding def create_img_encoding(self, img): if isinstance(img, str): img = Image.open(img) normed_img = self.clip_transform(img).unsqueeze(0).to(self.device) with torch.no_grad(): img_encoding = self.perceptor.encode_image(normed_img).detach() return img_encoding def set_clip_encoding(self, text=None, img=None, encoding=None): encoding = self.create_clip_encoding(text=text, img=img, encoding=encoding) self.clip_encoding = encoding.to(self.device) def index_of_first_separator(self) -> int: for c, word in enumerate(self.all_words): if self.separator in str(word): return c +1 def update_story_encoding(self, epoch, iteration): if self.separator is not None: self.words = " ".join(self.all_words[:self.index_of_first_separator()]) #removes separator from epoch-text self.words = self.words.replace(self.separator,'') self.all_words = self.all_words[self.index_of_first_separator():] else: if self.words is None: self.words = " ".join(self.all_words[:self.num_start_words]) self.all_words = self.all_words[self.num_start_words:] else: # add words_per_epoch new words count = 0 while count < self.words_per_epoch and len(self.all_words) > 0: new_word = self.all_words[0] self.words = " ".join(self.words.split(" ") + [new_word]) self.all_words = self.all_words[1:] count += 1 # remove words until it fits in context length while len(self.words) > self.perceptor.context_length: # remove first word self.words = " ".join(self.words.split(" ")[1:]) # get new encoding print("Now thinking of: ", '"', self.words, '"') sequence_number = self.get_img_sequence_number(epoch, iteration) # save new words to disc with open("story_transitions.txt", "a") as f: f.write(f"{epoch}, {sequence_number}, {self.words}\n") encoding = self.create_text_encoding(self.words) return encoding def image_output_path(self, sequence_number=None): """ Returns underscore separated Path. A current timestamp is prepended if `self.save_date_time` is set. Sequence number left padded with 6 zeroes is appended if `save_every` is set. :rtype: Path """ output_path = self.textpath if sequence_number: sequence_number_left_padded = str(sequence_number).zfill(6) output_path = f"{output_path}.{sequence_number_left_padded}" if self.save_date_time: current_time = datetime.now().strftime("%y%m%d-%H%M%S_%f") output_path = f"{current_time}_{output_path}" return Path(f"{output_path}.jpg") def train_step(self, epoch, iteration): total_loss = 0 for _ in range(self.gradient_accumulate_every): with autocast(enabled=True): out, loss = self.model(self.clip_encoding) loss = loss / self.gradient_accumulate_every total_loss += loss self.scaler.scale(loss).backward() out = out.cpu().float().clamp(0., 1.) self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if (iteration % self.save_every == 0) and self.save_progress: self.save_image(epoch, iteration, img=out) return out, total_loss def get_img_sequence_number(self, epoch, iteration): current_total_iterations = epoch * self.iterations + iteration sequence_number = current_total_iterations // self.save_every return sequence_number @torch.no_grad() def save_image(self, epoch, iteration, img=None): sequence_number = self.get_img_sequence_number(epoch, iteration) if img is None: img = self.model(self.clip_encoding, return_loss=False).cpu().float().clamp(0., 1.) self.filename = self.image_output_path(sequence_number=sequence_number) pil_img = T.ToPILImage()(img.squeeze()) pil_img.save(self.filename, quality=95, subsampling=0) pil_img.save(f"{self.textpath}.jpg", quality=95, subsampling=0) tqdm.write(f'image updated at "./{str(self.filename)}"') def generate_gif(self): images = [] for file_name in sorted(os.listdir('./')): if file_name.startswith(self.textpath) and file_name != f'{self.textpath}.jpg': images.append(imread(os.path.join('./', file_name))) if self.save_video: mimsave(f'{self.textpath}.mp4', images) print(f'Generated image generation animation at ./{self.textpath}.mp4') if self.save_gif: mimsave(f'{self.textpath}.gif', images) print(f'Generated image generation animation at ./{self.textpath}.gif') def forward(self): if exists(self.start_image): tqdm.write('Preparing with initial image...') optim = DiffGrad(self.model.model.parameters(), lr = self.start_image_lr) pbar = trange(self.start_image_train_iters, desc='iteration') try: for _ in pbar: loss = self.model.model(self.start_image) loss.backward() pbar.set_description(f'loss: {loss.item():.2f}') optim.step() optim.zero_grad() except KeyboardInterrupt: print('interrupted by keyboard, gracefully exiting') return exit() del self.start_image del optim tqdm.write(f'Imagining "{self.textpath}" from the depths of my weights...') with torch.no_grad(): self.model(self.clip_encoding, dry_run=True) # do one warmup step due to potential issue with CLIP and CUDA if self.open_folder: open_folder('./') self.open_folder = False try: for epoch in trange(self.epochs, desc='epochs'): pbar = trange(self.iterations, desc='iteration') for i in pbar: _, loss = self.train_step(epoch, i) pbar.set_description(f'loss: {loss.item():.2f}') # Update clip_encoding per epoch if we are creating a story if self.create_story: self.clip_encoding = self.update_story_encoding(epoch, i) except KeyboardInterrupt: print('interrupted by keyboard, gracefully exiting') return self.save_image(epoch, i) # one final save at end if (self.save_gif or self.save_video) and self.save_progress: self.generate_gif()
deep-daze-main
deep_daze/deep_daze.py
from collections import OrderedDict from typing import Tuple, Union import torch import torch.nn.functional as F from torch import nn from pathlib import Path import hashlib import os import urllib import warnings from typing import Union, List from torchvision.transforms import Compose, Normalize from tqdm import tqdm _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" } def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm( total=int(source.info().get("Content-Length")), unit='iB', unit_scale=True, desc=f"Downloading {filename}", ) as loop: while True: buffer = source.read(524288) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _transform(): return Compose([ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model (default) or more hackable non-JIT model. Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name]) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: model = build_model(state_dict or model.state_dict()).to(device) if str(device) == "cpu": model.float() return model, _transform() # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform() def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([])) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logit_scale * text_features @ image_features.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval() import html from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = Path(bpe_path).read_text(encoding='utf8').split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text _tokenizer = SimpleTokenizer()
deep-daze-main
deep_daze/clip.py
from setuptools import setup, find_packages setup( name = 'reformer_pytorch', packages = find_packages(exclude=['examples', 'pretraining']), version = '1.4.4', license='MIT', description = 'Reformer, the Efficient Transformer, Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/reformer-pytorch', keywords = ['transformers', 'attention', 'artificial intelligence'], install_requires=[ 'axial-positional-embedding>=0.1.0', 'einops', 'local-attention', 'product-key-memory', 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
reformer-pytorch-master
setup.py
from functools import partial import torch from torch import nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from reformer_pytorch.reformer_pytorch import ReformerLM from reformer_pytorch.autopadder import Autopadder def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class TrainingWrapper(nn.Module): def __init__(self, net, ignore_index = -100, pad_value = 0): super().__init__() assert isinstance(net, ReformerLM), 'generative trainer wrapper can only accept ReformerLM class' self.pad_value = pad_value self.ignore_index = ignore_index self.net = Autopadder(net) self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): was_training = self.net.training num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape self.net.eval() out = start_tokens input_mask = kwargs.pop('input_mask', None) if input_mask is None: input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device) for _ in range(seq_len): x = out[:, -self.max_seq_len:] input_mask = input_mask[:, -self.max_seq_len:] logits = self.net(x, input_mask=input_mask, **kwargs)[:, -1, :] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) input_mask = F.pad(input_mask, (0, 1), value=True) if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, return_loss = False, **kwargs): pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value) if not return_loss: if not isinstance(x, torch.Tensor): x = pad(x) return self.net(x, **kwargs) if isinstance(x, torch.Tensor): xi = x[:, :-1] xo = x[:, 1:] else: xi = pad(list(map(lambda t: t[:-1], x))) xo = pad(list(map(lambda t: t[1:], x))) out = self.net(xi, **kwargs) loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) return loss
reformer-pytorch-master
reformer_pytorch/generative_tools.py
import math import torch from torch import nn import torch.nn.functional as F from reformer_pytorch.reformer_pytorch import Reformer, ReformerLM, LSHSelfAttention def pad_to_multiple(tensor, seqlen, multiple, dim=-1): m = seqlen / multiple if m.is_integer(): return tensor remainder = math.ceil(m) * multiple - seqlen pad_offset = (0,) * (-1 - dim) * 2 return F.pad(tensor, (*pad_offset, 0, remainder), value=0) class Autopadder(nn.Module): def __init__(self, net): super().__init__() assert isinstance(net, (LSHSelfAttention, Reformer, ReformerLM)), 'only modules LSHSelfAttention, Reformer, ReformerLM accepted' self.net = net reformer = net.reformer if isinstance(net, ReformerLM) else net self.pad_dim = -1 if isinstance(net, ReformerLM) else -2 self.bucket_size = reformer.bucket_size self.num_mem_kv = reformer.num_mem_kv self.full_attn_thres = reformer.full_attn_thres def forward(self, x, **kwargs): b, t, m, device = *x.shape[:2], self.num_mem_kv, x.device keys = kwargs.get('keys') input_mask = kwargs.get('input_mask') input_attn_mask = kwargs.get('input_attn_mask') k_len = 0 if keys is None else keys.shape[1] seqlen = t + m + k_len if seqlen > self.full_attn_thres: if input_mask is None: input_mask = torch.full((b, t), True, device=x.device, dtype=torch.bool) x = pad_to_multiple(x, seqlen, self.bucket_size * 2, dim=self.pad_dim) if input_mask is not None: new_mask = F.pad(input_mask, (0, x.shape[1] - input_mask.shape[1]), value=False) kwargs.update(input_mask=new_mask) if input_attn_mask is not None: offset = x.shape[1] - input_attn_mask.shape[1] new_mask = F.pad(input_attn_mask, (0, offset, 0, offset), value=False) kwargs.update(input_attn_mask=new_mask) out = self.net(x, **kwargs) return out[:, 0:t]
reformer-pytorch-master
reformer_pytorch/autopadder.py
import re from torch import nn from reformer_pytorch.reformer_pytorch import ReformerLM from reformer_pytorch.generative_tools import TrainingWrapper ENC_PREFIX = 'enc_' DEC_PREFIX = 'dec_' def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return bool(re.match(f'^{prefix}', str)) def group_by_key_prefix(prefix, d): return group_dict_by_key(lambda x: string_begins_with(prefix, x), d) def group_by_key_prefix_and_remove_prefix(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: string_begins_with(prefix, x), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs def extract_enc_dec_kwargs(kwargs): enc_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(ENC_PREFIX, kwargs) dec_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(DEC_PREFIX, kwargs) return enc_kwargs, dec_kwargs, kwargs def extract_and_set_enc_dec_kwargs(kwargs): enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs) if 'input_mask' in enc_kwargs: dec_kwargs.setdefault('context_mask', enc_kwargs['input_mask']) return enc_kwargs, dec_kwargs, kwargs class ReformerEncDec(nn.Module): def __init__(self, dim, ignore_index = 0, pad_value = 0, **kwargs): super().__init__() enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs) assert 'return_embedding' not in enc_kwargs, 'you cannot manually set the return embeddings flag for the encoder' assert 'dim' not in dec_kwargs and 'dim' not in enc_kwargs, 'you must set the dim for both encoder and decoder' enc_kwargs['dim'] = dec_kwargs['dim'] = dim enc_kwargs['return_embeddings'] = True dec_kwargs['causal'] = True enc_kwargs.setdefault('bucket_size', 64) dec_kwargs.setdefault('bucket_size', enc_kwargs['bucket_size'] * 2) enc = ReformerLM(**enc_kwargs) dec = ReformerLM(**dec_kwargs) self.enc = TrainingWrapper(enc, ignore_index = ignore_index, pad_value = pad_value) self.dec = TrainingWrapper(dec, ignore_index = ignore_index, pad_value = pad_value) def generate(self, seq_in, seq_out_start, seq_len, **kwargs): enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs) enc_keys = self.enc(seq_in, **enc_kwargs) return self.dec.generate(seq_out_start, seq_len, keys = enc_keys, **{**dec_kwargs, **kwargs}) def forward(self, seq_in, seq_out, return_loss = False, **kwargs): enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs) enc_keys = self.enc(seq_in, **enc_kwargs) return self.dec(seq_out, return_loss = return_loss, keys = enc_keys, **dec_kwargs)
reformer-pytorch-master
reformer_pytorch/reformer_enc_dec.py
import torch import torch.nn as nn from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(nn.Module): def __init__(self, f, g, depth=None, send_signal = False): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) self.depth = depth self.send_signal = send_signal def forward(self, x, f_args = {}, g_args = {}): x1, x2 = torch.chunk(x, 2, dim=2) y1, y2 = None, None if self.send_signal: f_args['_reverse'] = g_args['_reverse'] = False f_args['_depth'] = g_args['_depth'] = self.depth with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim=2) def backward_pass(self, y, dy, f_args = {}, g_args = {}): y1, y2 = torch.chunk(y, 2, dim=2) del y dy1, dy2 = torch.chunk(dy, 2, dim=2) del dy if self.send_signal: f_args['_reverse'] = g_args['_reverse'] = True f_args['_depth'] = g_args['_depth'] = self.depth with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1, retain_graph=True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim=2) dx = torch.cat([dx1, dx2], dim=2) return x, dx class IrreversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = f self.g = g def forward(self, x, f_args, g_args): x1, x2 = torch.chunk(x, 2, dim=2) y1 = x1 + self.f(x2, **f_args) y2 = x2 + self.g(y1, **g_args) return torch.cat([y1, y2], dim=2) class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, kwargs): ctx.kwargs = kwargs for block in blocks: x = block(x, **kwargs) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward(ctx, dy): y = ctx.y kwargs = ctx.kwargs for block in ctx.blocks[::-1]: y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class ReversibleSequence(nn.Module): def __init__(self, blocks, layer_dropout = 0., reverse_thres = 0, send_signal = False): super().__init__() self.layer_dropout = layer_dropout self.reverse_thres = reverse_thres self.blocks = nn.ModuleList([ReversibleBlock(f, g, depth, send_signal) for depth, (f, g) in enumerate(blocks)]) self.irrev_blocks = nn.ModuleList([IrreversibleBlock(f=f, g=g) for f, g in blocks]) def forward(self, x, arg_route = (True, False), **kwargs): reverse = x.shape[1] > self.reverse_thres blocks = self.blocks if reverse else self.irrev_blocks if self.training and self.layer_dropout > 0: to_drop = torch.empty(len(self.blocks)).uniform_(0, 1) < self.layer_dropout blocks = [block for block, drop in zip(self.blocks, to_drop) if not drop] blocks = self.blocks[:1] if len(blocks) == 0 else blocks f_args, g_args = map(lambda route: kwargs if route else {}, arg_route) block_kwargs = {'f_args': f_args, 'g_args': g_args} if not reverse: for block in blocks: x = block(x, **block_kwargs) return x return _ReversibleFunction.apply(x, blocks, block_kwargs)
reformer-pytorch-master
reformer_pytorch/reversible.py
from torch import nn from reformer_pytorch.reformer_pytorch import LSHAttention, LSHSelfAttention from collections import defaultdict class Recorder(nn.Module): def __init__(self, net): super().__init__() self.iter = 0 self.recordings = defaultdict(list) self.net = net self.on = True self.ejected = False def eject(self): self.ejected = True self.clear() self.unwire() return self.net def wire(self): for module in self.net.modules(): if isinstance(module, LSHAttention): module._return_attn = True if isinstance(module, LSHSelfAttention): module.callback = self.record def unwire(self): for module in self.net.modules(): if isinstance(module, LSHAttention): module._return_attn = False if isinstance(module, LSHSelfAttention): module.callback = None def turn_on(self): self.on = True def turn_off(self): self.on = False def clear(self): del self.recordings self.recordings = defaultdict(list) self.iter = 0 def record(self, attn, buckets): if not self.on: return data = {'attn': attn.detach().cpu(), 'buckets': buckets.detach().cpu()} self.recordings[self.iter].append(data) def forward(self, x, **kwargs): assert not self.ejected, 'Recorder has already been ejected and disposed' if self.on: self.wire() out = self.net(x, **kwargs) self.iter += 1 self.unwire() return out
reformer-pytorch-master
reformer_pytorch/recorder.py
from reformer_pytorch.reformer_pytorch import LSHAttention, LSHSelfAttention, Reformer, ReformerLM from reformer_pytorch.reformer_enc_dec import ReformerEncDec from reformer_pytorch.recorder import Recorder from reformer_pytorch.autopadder import Autopadder
reformer-pytorch-master
reformer_pytorch/__init__.py
import math import torch import torch.nn as nn from torch.nn import Identity import torch.nn.functional as F from torch.autograd import Function from functools import partial, reduce, wraps from itertools import chain from operator import mul from local_attention import LocalAttention from axial_positional_embedding import AxialPositionalEmbedding from product_key_memory import PKM from reformer_pytorch.reversible import ReversibleSequence from einops import rearrange, repeat #constants TOKEN_SELF_ATTN_VALUE = -5e4 # carefully set for half precision to work # helper fns def exists(val): return val is not None def sort_key_val(t1, t2, dim=-1): values, indices = t1.sort(dim=dim) t2 = t2.expand_as(t1) return values, t2.gather(dim, indices) def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) def process_inputs_chunk(fn, chunks=1, dim=0): def inner_fn(*args, **kwargs): keys, values, len_args = kwargs.keys(), kwargs.values(), len(args) chunked_args = list(zip(*map(lambda x: x.chunk(chunks, dim=dim), list(args) + list(values)))) all_args = map(lambda x: (x[:len_args], dict(zip(keys, x[len_args:]))), chunked_args) outputs = [fn(*c_args, **c_kwargs) for c_args, c_kwargs in all_args] return tuple(map(lambda x: torch.cat(x, dim=dim), zip(*outputs))) return inner_fn def chunked_sum(tensor, chunks=1): *orig_size, last_dim = tensor.shape tensor = tensor.reshape(-1, last_dim) summed_tensors = [c.sum(dim=-1) for c in tensor.chunk(chunks, dim=0)] return torch.cat(summed_tensors, dim=0).reshape(orig_size) def default(val, default_val): return default_val if val is None else val def cast_tuple(x): return x if isinstance(x, tuple) else (x,) def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def cache_fn(f): cache = None @wraps(f) def cached_fn(*args, **kwargs): nonlocal cache if cache is not None: return cache cache = f(*args, **kwargs) return cache return cached_fn def cache_method_decorator(cache_attr, cache_namespace, reexecute = False): def inner_fn(fn): @wraps(fn) def wrapper(self, *args, key_namespace=None, fetch=False, set_cache=True, **kwargs): namespace_str = str(default(key_namespace, '')) _cache = getattr(self, cache_attr) _keyname = f'{cache_namespace}:{namespace_str}' if fetch: val = _cache[_keyname] if reexecute: fn(self, *args, **kwargs) else: val = fn(self, *args, **kwargs) if set_cache: setattr(self, cache_attr, {**_cache, **{_keyname: val}}) return val return wrapper return inner_fn def expand_dim(dim, k, t): t = t.unsqueeze(dim) expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def split_at_index(dim, index, t): pre_slices = (slice(None),) * dim l = (*pre_slices, slice(None, index)) r = (*pre_slices, slice(index, None)) return t[l], t[r] # helper classes class Always(nn.Module): def __init__(self, val): super().__init__() self.val = val def forward(self, *args, **kwargs): return self.val class MatrixMultiply(nn.Module): def __init__(self, tensor, transpose = False, normalize = False): super().__init__() self.tensor = tensor self.transpose = transpose self.normalize = normalize def forward(self, x): tensor = self.tensor if self.normalize: tensor = F.normalize(tensor, dim=-1) if self.transpose: tensor = tensor.t() return x @ tensor class ReZero(nn.Module): def __init__(self, fn): super().__init__() self.g = nn.Parameter(torch.zeros(1)) self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) * self.g class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.g = nn.Parameter(torch.ones(1)) self.eps = eps def forward(self, x): n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps) return x / n * self.g class PreNorm(nn.Module): def __init__(self, norm_class, dim, fn): super().__init__() self.norm = norm_class(dim) self.fn = fn def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class Chunk(nn.Module): def __init__(self, chunks, fn, along_dim = -1): super().__init__() self.dim = along_dim self.chunks = chunks self.fn = fn def forward(self, x, **kwargs): if self.chunks == 1: return self.fn(x, **kwargs) chunks = x.chunk(self.chunks, dim = self.dim) return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim) # LSH attention as described in https://openreview.net/pdf?id=rkgNKkHtvB # adapted from trax, stripped to what paper said needed to work # namely that buckets need to be at least 64 with 8 rounds of hashing # https://github.com/google/trax/blob/master/trax/layers/research/efficient_attention.py#L442 class LSHAttention(nn.Module): def __init__( self, dropout = 0., bucket_size = 64, n_hashes = 8, causal = False, allow_duplicate_attention = True, attend_across_buckets = True, rehash_each_round = True, drop_for_hash_rate = 0.0, random_rotations_per_head = False, return_attn = False): super().__init__() if dropout >= 1.0: raise ValueError('Dropout rates must be lower than 1.') self.dropout = nn.Dropout(dropout) self.dropout_for_hash = nn.Dropout(drop_for_hash_rate) assert rehash_each_round or allow_duplicate_attention, ( 'The setting {allow_duplicate_attention=False, rehash_each_round=False}' ' is not implemented.') self.causal = causal self.bucket_size = bucket_size self.n_hashes = n_hashes self._allow_duplicate_attention = allow_duplicate_attention self._attend_across_buckets = attend_across_buckets self._rehash_each_round = rehash_each_round self._random_rotations_per_head = random_rotations_per_head # will expend extra computation to return attention matrix self._return_attn = return_attn # cache buckets for reversible network, reported by authors to make Reformer work at depth self._cache = {} @cache_method_decorator('_cache', 'buckets', reexecute=True) def hash_vectors(self, n_buckets, vecs): batch_size = vecs.shape[0] device = vecs.device # See https://arxiv.org/pdf/1509.02897.pdf # We sample a different random rotation for each round of hashing to # decrease the probability of hash misses. assert n_buckets % 2 == 0 rot_size = n_buckets rotations_shape = ( batch_size if self._random_rotations_per_head else 1, vecs.shape[-1], self.n_hashes if self._rehash_each_round else 1, rot_size // 2) random_rotations = torch.randn(rotations_shape, dtype=vecs.dtype, device=device).expand(batch_size, -1, -1, -1) dropped_vecs = self.dropout_for_hash(vecs) rotated_vecs = torch.einsum('btf,bfhi->bhti', dropped_vecs, random_rotations) if self._rehash_each_round: # rotated_vectors size [batch,n_hash,seq_len,buckets] rotated_vecs = torch.cat([rotated_vecs, -rotated_vecs], dim=-1) buckets = torch.argmax(rotated_vecs, dim=-1) else: rotated_vecs = torch.cat([rotated_vecs, -rotated_vecs], dim=-1) # In this configuration, we map each item to the top self.n_hashes buckets rotated_vecs = torch.squeeze(rotated_vecs, 1) bucket_range = torch.arange(rotated_vecs.shape[-1], device=device) bucket_range = torch.reshape(bucket_range, (1, -1)) bucket_range = bucket_range.expand_as(rotated_vecs) _, buckets = sort_key_val(rotated_vecs, bucket_range, dim=-1) # buckets size [batch size, seq_len, buckets] buckets = buckets[... , -self.n_hashes:].transpose(1, 2) # buckets is now (self.n_hashes, seq_len). Next we add offsets so that # bucket numbers from different hashing rounds don't overlap. offsets = torch.arange(self.n_hashes, device=device) offsets = torch.reshape(offsets * n_buckets, (1, -1, 1)) buckets = torch.reshape(buckets + offsets, (batch_size, -1,)) return buckets def forward(self, qk, v, query_len = None, input_mask = None, input_attn_mask = None, pos_emb = None, **kwargs): batch_size, seqlen, dim, device = *qk.shape, qk.device query_len = default(query_len, seqlen) is_reverse = kwargs.pop('_reverse', False) depth = kwargs.pop('_depth', None) assert seqlen % (self.bucket_size * 2) == 0, f'Sequence length ({seqlen}) needs to be divisible by target bucket size x 2 - {self.bucket_size * 2}' n_buckets = seqlen // self.bucket_size buckets = self.hash_vectors(n_buckets, qk, key_namespace=depth, fetch=is_reverse, set_cache=self.training) # We use the same vector as both a query and a key. assert int(buckets.shape[1]) == self.n_hashes * seqlen total_hashes = self.n_hashes ticker = torch.arange(total_hashes * seqlen, device=device).unsqueeze(0).expand_as(buckets) buckets_and_t = seqlen * buckets + (ticker % seqlen) buckets_and_t = buckets_and_t.detach() # Hash-based sort ("s" at the start of variable names means "sorted") sbuckets_and_t, sticker = sort_key_val(buckets_and_t, ticker, dim=-1) _, undo_sort = sticker.sort(dim=-1) del ticker sbuckets_and_t = sbuckets_and_t.detach() sticker = sticker.detach() undo_sort = undo_sort.detach() if exists(pos_emb): qk = apply_rotary_pos_emb(qk, pos_emb) st = (sticker % seqlen) sqk = batched_index_select(qk, st) sv = batched_index_select(v, st) # Split off a "bin" axis so that attention only occurs within chunks. chunk_size = total_hashes * n_buckets bq_t = bkv_t = torch.reshape(st, (batch_size, chunk_size, -1)) bqk = torch.reshape(sqk, (batch_size, chunk_size, -1, dim)) bv = torch.reshape(sv, (batch_size, chunk_size, -1, dim)) # Hashing operates on unit-length vectors. Unnormalized query vectors are # fine because they effectively provide a learnable temperature for the # attention softmax, but normalizing keys is needed so that similarity for # the purposes of attention correctly corresponds to hash locality. bq = bqk bk = F.normalize(bqk, p=2, dim=-1).type_as(bq) # Allow each chunk to attend within itself, and also one chunk back. Chunk # boundaries might occur in the middle of a sequence of items from the # same bucket, so this increases the chances of attending to relevant items. def look_one_back(x): x_extra = torch.cat([x[:, -1:, ...], x[:, :-1, ...]], dim=1) return torch.cat([x, x_extra], dim=2) bk = look_one_back(bk) bv = look_one_back(bv) bkv_t = look_one_back(bkv_t) # Dot-product attention. dots = torch.einsum('bhie,bhje->bhij', bq, bk) * (dim ** -0.5) masked_value = max_neg_value(dots) # Mask for post qk attention logits of the input sequence if input_attn_mask is not None: input_attn_mask = F.pad(input_attn_mask, (0, seqlen - input_attn_mask.shape[-1], 0, seqlen - input_attn_mask.shape[-2]), value=True) dot_attn_indices = ((bq_t * seqlen)[:, :, :, None] + bkv_t[:, :, None, :]) input_attn_mask = input_attn_mask.reshape(batch_size, -1) dot_attn_indices = dot_attn_indices.reshape(batch_size, -1) mask = input_attn_mask.gather(1, dot_attn_indices).reshape_as(dots) dots.masked_fill_(~mask, masked_value) del mask # Input mask for padding in variable lengthed sequences if input_mask is not None: input_mask = F.pad(input_mask, (0, seqlen - input_mask.shape[1]), value=True) mq = input_mask.gather(1, st).reshape((batch_size, chunk_size, -1)) mkv = look_one_back(mq) mask = mq[:, :, :, None] * mkv[:, :, None, :] dots.masked_fill_(~mask, masked_value) del mask # Causal masking if self.causal: mask = bq_t[:, :, :, None] < bkv_t[:, :, None, :] if seqlen > query_len: mask = mask & (bkv_t[:, :, None, :] < query_len) dots.masked_fill_(mask, masked_value) del mask # Mask out attention to self except when no other targets are available. self_mask = bq_t[:, :, :, None] == bkv_t[:, :, None, :] dots.masked_fill_(self_mask, TOKEN_SELF_ATTN_VALUE) del self_mask # Mask out attention to other hash buckets. if not self._attend_across_buckets: bq_buckets = bkv_buckets = torch.reshape(sbuckets_and_t // seqlen, (batch_size, chunk_size, -1)) bkv_buckets = look_one_back(bkv_buckets) bucket_mask = bq_buckets[:, :, :, None] != bkv_buckets[:, :, None, :] dots.masked_fill_(bucket_mask, masked_value) del bucket_mask # Don't double-count query-key pairs across multiple rounds of hashing. # There are two possible strategies here. (1) The default is to count how # many times a query-key pair is repeated, and to lower its log-prob # correspondingly at each repetition. (2) When hard_k is set, the code # instead masks all but the first occurence of each query-key pair. if not self._allow_duplicate_attention: locs1 = undo_sort // bq_t.shape[-1] locs2 = (locs1 + 1) % chunk_size if not self._attend_across_buckets: locs1 = buckets * chunk_size + locs1 locs2 = buckets * chunk_size + locs2 locs = torch.cat([ torch.reshape(locs1, (batch_size, total_hashes, seqlen)), torch.reshape(locs2, (batch_size, total_hashes, seqlen)), ], 1).permute((0, 2, 1)) slocs = batched_index_select(locs, st) b_locs = torch.reshape(slocs, (batch_size, chunk_size, -1, 2 * total_hashes)) b_locs1 = b_locs[:, :, :, None, :total_hashes] bq_locs = b_locs1.expand(b_locs.shape[:3] + (2, total_hashes)) bq_locs = torch.reshape(bq_locs, b_locs.shape) bkv_locs = look_one_back(b_locs) dup_counts = (bq_locs[:, :, :, None, :] == bkv_locs[:, :, None, :, :]) # for memory considerations, chunk summation of last dimension for counting duplicates dup_counts = chunked_sum(dup_counts, chunks=(total_hashes * batch_size)) dup_counts = dup_counts.detach() assert dup_counts.shape == dots.shape dots = dots - torch.log(dup_counts + 1e-9) del dup_counts # Softmax. dots_logsumexp = torch.logsumexp(dots, dim=-1, keepdim=True) dots = torch.exp(dots - dots_logsumexp).type_as(dots) dropped_dots = self.dropout(dots) bo = torch.einsum('buij,buje->buie', dropped_dots, bv) so = torch.reshape(bo, (batch_size, -1, dim)) slogits = torch.reshape(dots_logsumexp, (batch_size, -1,)) # unsort logits o = batched_index_select(so, undo_sort) logits = slogits.gather(1, undo_sort) o = torch.reshape(o, (batch_size, total_hashes, seqlen, dim)) logits = torch.reshape(logits, (batch_size, total_hashes, seqlen, 1)) if query_len != seqlen: query_slice = (slice(None), slice(None), slice(0, query_len)) o, logits = o[query_slice], logits[query_slice] probs = torch.exp(logits - torch.logsumexp(logits, dim=1, keepdim=True)) out = torch.sum(o * probs, dim=1) attn = torch.empty(0, device=device) # return unsorted attention weights if self._return_attn: attn_unsort = ((bq_t * seqlen)[:, :, :, None] + bkv_t[:, :, None, :]) attn_unsort = attn_unsort.view(batch_size * total_hashes, -1).long() unsorted_dots = torch.zeros(batch_size * total_hashes, seqlen * seqlen, device=device) unsorted_dots.scatter_add_(1, attn_unsort, dots.view_as(attn_unsort)) del attn_unsort unsorted_dots = unsorted_dots.reshape(batch_size, total_hashes, seqlen, seqlen) attn = torch.sum(unsorted_dots[:, :, 0:query_len, :] * probs, dim=1) # return output, attention matrix, and bucket distribution return out, attn, buckets # simple full attention class FullQKAttention(nn.Module): def __init__(self, causal = False, dropout = 0.): super().__init__() self.causal = causal self.dropout = nn.Dropout(dropout) def forward(self, qk, v, query_len = None, input_mask = None, input_attn_mask = None, **kwargs): b, seq_len, dim = qk.shape query_len = default(query_len, seq_len) t = query_len q = qk[:, 0:query_len] qk = F.normalize(qk, 2, dim=-1).type_as(q) dot = torch.einsum('bie,bje->bij', q, qk) * (dim ** -0.5) # qk attention requires tokens not attend to self i = torch.arange(t) dot[:, i, i] = TOKEN_SELF_ATTN_VALUE masked_value = max_neg_value(dot) # Input mask for padding in variable lengthed sequences if input_mask is not None: mask = input_mask[:, 0:query_len, None] * input_mask[:, None, :] mask = F.pad(mask, (0, seq_len - mask.shape[-1]), value=True) dot.masked_fill_(~mask, masked_value) # Mask for post qk attention logits of the input sequence if input_attn_mask is not None: input_attn_mask = F.pad(input_attn_mask, (0, seq_len - input_attn_mask.shape[-1]), value=True) dot.masked_fill_(~input_attn_mask, masked_value) if self.causal: i, j = torch.triu_indices(t, t, 1) dot[:, i, j] = masked_value dot = dot.softmax(dim=-1) dot = self.dropout(dot) out = torch.einsum('bij,bje->bie', dot, v) return out, dot, torch.empty(0) # Shared qk attention, using either full or LSH attention class LSHSelfAttention(nn.Module): def __init__(self, dim, heads = 8, bucket_size = 64, n_hashes = 8, causal = False, dim_head = None, attn_chunks = 1, random_rotations_per_head = False, attend_across_buckets = True, allow_duplicate_attention = True, num_mem_kv = 0, one_value_head = False, use_full_attn = False, full_attn_thres = None, return_attn = False, post_attn_dropout = 0., dropout = 0., n_local_attn_heads = 0, **kwargs): super().__init__() assert dim_head or (dim % heads) == 0, 'dimensions must be divisible by number of heads' assert n_local_attn_heads < heads, 'local attention heads must be less than number of heads' dim_head = default(dim_head, dim // heads) dim_heads = dim_head * heads self.dim = dim self.heads = heads self.dim_head = dim_head self.attn_chunks = default(attn_chunks, 1) self.v_head_repeats = (heads if one_value_head else 1) v_dim = dim_heads // self.v_head_repeats self.toqk = nn.Linear(dim, dim_heads, bias = False) self.tov = nn.Linear(dim, v_dim, bias = False) self.to_out = nn.Linear(dim_heads, dim) self.bucket_size = bucket_size self.lsh_attn = LSHAttention(bucket_size=bucket_size, n_hashes=n_hashes, causal=causal, random_rotations_per_head=random_rotations_per_head, attend_across_buckets = attend_across_buckets, allow_duplicate_attention = allow_duplicate_attention, return_attn = return_attn, dropout = dropout, **kwargs) self.full_attn = FullQKAttention(causal=causal, dropout=dropout) self.post_attn_dropout = nn.Dropout(post_attn_dropout) self.use_full_attn = use_full_attn self.full_attn_thres = default(full_attn_thres, bucket_size) self.num_mem_kv = num_mem_kv self.mem_kv = nn.Parameter(torch.randn(1, num_mem_kv, dim, requires_grad=True)) if num_mem_kv > 0 else None self.n_local_attn_heads = n_local_attn_heads self.local_attn = LocalAttention(window_size=bucket_size * 2, causal=causal, dropout=dropout, shared_qk=True, look_forward=(1 if not causal else 0)) self.callback = None def forward(self, x, keys = None, input_mask = None, input_attn_mask = None, context_mask = None, pos_emb = None, **kwargs): device, dtype = x.device, x.dtype b, t, e, h, dh, m, l_h = *x.shape, self.heads, self.dim_head, self.num_mem_kv, self.n_local_attn_heads mem_kv = default(self.mem_kv, torch.empty(b, 0, e, dtype=dtype, device=device)) mem = mem_kv.expand(b, m, -1) keys = default(keys, torch.empty(b, 0, e, dtype=dtype, device=device)) c = keys.shape[1] kv_len = t + m + c use_full_attn = self.use_full_attn or kv_len <= self.full_attn_thres x = torch.cat((x, mem, keys), dim=1) qk = self.toqk(x) v = self.tov(x) v = v.repeat(1, 1, self.v_head_repeats) def merge_heads(v): return v.view(b, kv_len, h, -1).transpose(1, 2) def split_heads(v): return v.view(b, h, t, -1).transpose(1, 2).contiguous() merge_batch_and_heads = partial(merge_dims, 0, 1) qk, v = map(merge_heads, (qk, v)) has_local = l_h > 0 lsh_h = h - l_h split_index_fn = partial(split_at_index, 1, l_h) (lqk, qk), (lv, v) = map(split_index_fn, (qk, v)) lqk, qk, lv, v = map(merge_batch_and_heads, (lqk, qk, lv, v)) masks = {} if input_mask is not None or context_mask is not None: default_mask = torch.tensor([True], device=device) i_mask = default(input_mask, default_mask.expand(b, t)) m_mask = default_mask.expand(b, m) c_mask = default(context_mask, default_mask.expand(b, c)) mask = torch.cat((i_mask, m_mask, c_mask), dim=1) mask = merge_batch_and_heads(expand_dim(1, lsh_h, mask)) masks['input_mask'] = mask if input_attn_mask is not None: input_attn_mask = merge_batch_and_heads(expand_dim(1, lsh_h, input_attn_mask)) masks['input_attn_mask'] = input_attn_mask attn_fn = self.lsh_attn if not use_full_attn else self.full_attn partial_attn_fn = partial(attn_fn, query_len = t, pos_emb = pos_emb, **kwargs) attn_fn_in_chunks = process_inputs_chunk(partial_attn_fn, chunks = self.attn_chunks) out, attn, buckets = attn_fn_in_chunks(qk, v, **masks) if self.callback is not None: self.callback(attn.reshape(b, lsh_h, t, -1), buckets.reshape(b, lsh_h, -1)) if has_local: lqk, lv = lqk[:, :t], lv[:, :t] local_out = self.local_attn(lqk, lqk, lv, input_mask=input_mask) local_out = local_out.reshape(b, l_h, t, -1) out = out.reshape(b, lsh_h, t, -1) out = torch.cat((local_out, out), dim=1) out = split_heads(out).view(b, t, -1) out = self.to_out(out) return self.post_attn_dropout(out) # feed forward class GELU_(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_ class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False): super().__init__() activation = default(activation, GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): t = torch.arange(x.shape[1], device=x.device) return self.emb(t) class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim = 1): t = torch.arange(x.shape[seq_dim], device = x.device).type_as(self.inv_freq) sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return emb[None, :, :].type_as(x) # rotary positional embedding helpers def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(qk, sinu_pos): sinu_pos = sinu_pos.type(qk.dtype) sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2) sin, cos = sinu_pos.unbind(dim = -2) sin, cos = map(lambda t: repeat(t, 'n d -> n (d j)', j = 2), (sin, cos)) seq_len = sin.shape[0] qk, qk_pass = qk[:, :seq_len], qk[:, seq_len:] qk = (qk * cos) + (rotate_every_two(qk) * sin) return torch.cat((qk, qk_pass), dim = 1) # reformer lm class Reformer(nn.Module): def __init__(self, dim, depth, heads = 8, dim_head = None, bucket_size = 64, n_hashes = 8, ff_chunks = 100, attn_chunks = None, causal = False, weight_tie = False, lsh_dropout = 0., ff_dropout = 0., ff_activation = None, ff_mult = 4, ff_glu = False, post_attn_dropout = 0., layer_dropout = 0., lsh_attend_across_buckets = True, lsh_allow_duplicate_attention = True, random_rotations_per_head = False, use_scale_norm = False, use_rezero = False, use_full_attn = False, full_attn_thres = 0, reverse_thres = 0, num_mem_kv = 0, one_value_head = False, n_local_attn_heads = 0, pkm_layers = tuple(), pkm_num_keys = 128): super().__init__() self.dim = dim self.depth = depth self.bucket_size = bucket_size self.num_mem_kv = num_mem_kv self.full_attn_thres = full_attn_thres get_attn = lambda: LSHSelfAttention(dim, heads, bucket_size, n_hashes, causal = causal, dim_head = dim_head, dropout = lsh_dropout, post_attn_dropout = post_attn_dropout, attn_chunks = attn_chunks, allow_duplicate_attention = lsh_allow_duplicate_attention, attend_across_buckets = lsh_attend_across_buckets, random_rotations_per_head = random_rotations_per_head, num_mem_kv = num_mem_kv, use_full_attn = use_full_attn, full_attn_thres = full_attn_thres, one_value_head = one_value_head, n_local_attn_heads = n_local_attn_heads) get_ff = lambda: Chunk(ff_chunks, FeedForward(dim, dropout = ff_dropout, activation = ff_activation, mult = ff_mult, glu = ff_glu), along_dim = -2) get_pkm = lambda: PKM(dim, num_keys = pkm_num_keys) if weight_tie: get_attn, get_ff, get_pkm = map(cache_fn, (get_attn, get_ff, get_pkm)) blocks = [] norm_type = ScaleNorm if use_scale_norm else nn.LayerNorm residual_fn_wrapper = ReZero if use_rezero else partial(PreNorm, norm_type, dim) for ind in range(depth): layer_num = ind + 1 use_pkm = layer_num in cast_tuple(pkm_layers) parallel_net = None attn = get_attn() if use_pkm: parallel_net = get_pkm() else: parallel_net = get_ff() f = residual_fn_wrapper(attn) g = residual_fn_wrapper(parallel_net) blocks.append(nn.ModuleList([f, g])) self.layers = ReversibleSequence(nn.ModuleList(blocks), layer_dropout = layer_dropout, reverse_thres = reverse_thres, send_signal = True) def forward(self, x, **kwargs): x = torch.cat([x, x], dim = -1) x = self.layers(x, **kwargs) return torch.stack(x.chunk(2, dim=-1)).mean(dim=0) class ReformerLM(nn.Module): def __init__(self, num_tokens, dim, depth, max_seq_len, heads = 8, dim_head = 64, bucket_size = 64, n_hashes = 4, ff_chunks = 100, attn_chunks = 1, causal = False, weight_tie = False, lsh_dropout = 0., ff_dropout = 0., ff_mult = 4, ff_activation = None, ff_glu = False, post_attn_dropout = 0., layer_dropout = 0., random_rotations_per_head = False, use_scale_norm = False, use_rezero = False, use_full_attn = False, full_attn_thres = 0, reverse_thres = 0, num_mem_kv = 0, one_value_head = False, emb_dim = None, return_embeddings = False, weight_tie_embedding = False, fixed_position_emb = False, absolute_position_emb = False, axial_position_emb = False, axial_position_shape = None, n_local_attn_heads = 0, pkm_layers = tuple(), pkm_num_keys = 128): super().__init__() emb_dim = default(emb_dim, dim) self.max_seq_len = max_seq_len self.token_emb = nn.Embedding(num_tokens, emb_dim) self.to_model_dim = Identity() if emb_dim == dim else nn.Linear(emb_dim, dim) self.pos_emb = Always(0) self.layer_pos_emb = Always(None) if axial_position_emb: axial_position_shape = default(axial_position_shape, (math.ceil(max_seq_len / bucket_size), bucket_size)) self.pos_emb = AxialPositionalEmbedding(emb_dim, axial_position_shape) elif absolute_position_emb: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) elif fixed_position_emb: self.pos_emb = FixedPositionalEmbedding(emb_dim) else: self.layer_pos_emb = FixedPositionalEmbedding(dim_head) self.reformer = Reformer(dim, depth, heads = heads, dim_head = dim_head, bucket_size = bucket_size, n_hashes = n_hashes, ff_chunks = ff_chunks, attn_chunks = attn_chunks, causal = causal, weight_tie = weight_tie, lsh_dropout = lsh_dropout, ff_mult = ff_mult, ff_activation = ff_activation, ff_glu = ff_glu, ff_dropout = ff_dropout, post_attn_dropout = 0., layer_dropout = layer_dropout, random_rotations_per_head = random_rotations_per_head, use_scale_norm = use_scale_norm, use_rezero = use_rezero, use_full_attn = use_full_attn, full_attn_thres = full_attn_thres, reverse_thres = reverse_thres, num_mem_kv = num_mem_kv, one_value_head = one_value_head, n_local_attn_heads = n_local_attn_heads, pkm_layers = pkm_layers, pkm_num_keys = pkm_num_keys) self.norm = nn.LayerNorm(dim) if return_embeddings: self.out = Identity() return self.out = nn.Sequential( nn.Linear(dim, emb_dim) if emb_dim != dim else Identity(), nn.Linear(emb_dim, num_tokens) if not weight_tie_embedding else MatrixMultiply(self.token_emb.weight, transpose=True, normalize=True) ) def forward(self, x, **kwargs): x = self.token_emb(x) x = x + self.pos_emb(x) layer_pos_emb = self.layer_pos_emb(x) x = self.to_model_dim(x) x = self.reformer(x, pos_emb = layer_pos_emb, **kwargs) x = self.norm(x) return self.out(x)
reformer-pytorch-master
reformer_pytorch/reformer_pytorch.py
import deepspeed from reformer_pytorch import ReformerLM from reformer_pytorch.generative_tools import TrainingWrapper import argparse import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset def add_argument(): parser=argparse.ArgumentParser(description='enwik8') parser.add_argument('--with_cuda', default=False, action='store_true', help='use CPU in case there\'s no GPU support') parser.add_argument('--use_ema', default=False, action='store_true', help='whether use exponential moving average') parser.add_argument('-b', '--batch_size', default=32, type=int, help='mini-batch size (default: 32)') parser.add_argument('-e', '--epochs', default=30, type=int, help='number of total epochs (default: 30)') parser.add_argument('--local_rank', type=int, default=-1, help='local rank passed from distributed launcher') parser = deepspeed.add_config_arguments(parser) args=parser.parse_args() return args # constants EPOCHS = 20 GRADIENT_ACCUMULATE_EVERY = 4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 1024 SEQ_LEN = 4096 # helpers def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate model model = ReformerLM( dim = 512, depth = 6, max_seq_len = SEQ_LEN, num_tokens = 256, heads = 8, bucket_size = 64, n_hashes = 4, ff_chunks = 10, lsh_dropout = 0.1, weight_tie = True, causal = True, n_local_attn_heads = 4, use_full_attn = False # set this to true for comparison with full attention ) model = TrainingWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) # setup deepspeed cmd_args = add_argument() model_engine, optimizer, trainloader, _ = deepspeed.initialize(args=cmd_args, model=model, model_parameters=model.parameters(), training_data=train_dataset) # training for _ in range(EPOCHS): for i, data in enumerate(trainloader): model_engine.train() data = data.to(model_engine.local_rank) loss = model_engine(data, return_loss = True) model_engine.backward(loss) model_engine.step() print(loss.item() * GRADIENT_ACCUMULATE_EVERY) if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): inp = random.choice(val_dataset)[:-1] loss = model(inp[None, :].cuda(), return_loss = True) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp.cuda(), GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
reformer-pytorch-master
examples/enwik8_deepspeed/train.py
from reformer_pytorch import ReformerLM from reformer_pytorch.generative_tools import TrainingWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 4096 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate model model = ReformerLM( dim = 512, depth = 6, max_seq_len = SEQ_LEN, num_tokens = 256, heads = 8, bucket_size = 64, n_hashes = 4, ff_chunks = 10, lsh_dropout = 0.1, weight_tie = True, causal = True, n_local_attn_heads = 4, use_full_attn = False # set this to true for comparison with full attention ) model = TrainingWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader), return_loss = True) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
reformer-pytorch-master
examples/enwik8_simple/train.py
import re import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, random_split from tqdm import tqdm from reformer_pytorch import Reformer, ReformerLM from transformers import BertTokenizer, PreTrainedTokenizer from fairseq.optim.adafactor import Adafactor import os import json import logging from datetime import datetime class WikiDataset(Dataset): def __init__(self, path="", prefix="train"): assert os.path.isdir(path) self.documents = [] filename_list = os.listdir(path) for file in filename_list: path_to_file = os.path.join(path, file) if not os.path.isfile(path_to_file): continue self.documents.append(path_to_file) def __len__(self): """ Returns the number of documents. """ return len(self.documents) def __getitem__(self, idx): document_path = self.documents[idx] document_name = document_path.split("/")[-1] items = [] with open(document_path, encoding="utf-8") as source: raw_text = source.readlines() for obj in raw_text: text = json.loads(obj)['text'] text = re.sub('\\n', ' ', text) text = re.sub('\\s+', ' ', text) items.append(text) return items class ReformerTrainer(object): def __init__(self, dataset, model, tokenizer, device=None, train_batch_size=8, eval_batch_size=None, tb_writer=True, tb_dir='./tb_logs', log_dir='./logs'): """ Provides an easy to use class for pretraining and evaluating a Reformer Model. :param dataset: (torch.utils.data.Dataset) containing all of the data you wish to utilize during training. :param model: (reformer_pytorch.Reformer) :param tokenizer: (transformers.PreTrainedTokenizer) defaults to BertTokenizer ('bert-base-case') :param device: provide manual device placement. If None, will default to cuda:0 if available. :param tb_writer: (bool) Whether to write to tensorboard or not. :param tb_dir: (str) Where to write TB logs to. :param log_dir: (str) Where to write generic logs to. """ self.dataset = dataset self.model = model self.tokenizer = tokenizer self.device = device self.n_gpu = torch.cuda.device_count() if torch.cuda.is_available() else 0 self.train_batch_size = train_batch_size self.eval_batch_size = eval_batch_size self.tb_writer = tb_writer self.log_dir = log_dir if tokenizer is None: self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased') if device is None: self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu' if eval_batch_size is None: self.eval_batch_size = train_batch_size if tb_writer: from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter(log_dir=tb_dir) logging.basicConfig(filename=f'{log_dir}/{datetime.now().date()}.log', level=logging.INFO) def build_dataloaders(self, train_test_split=0.1, train_shuffle=True, eval_shuffle=True): """ Builds the Training and Eval DataLoaders :param train_test_split: The ratio split of test to train data. :param train_shuffle: (bool) True if you wish to shuffle the train_dataset. :param eval_shuffle: (bool) True if you wish to shuffle the eval_dataset. :return: train dataloader and evaluation dataloader. """ dataset_len = len(self.dataset) eval_len = int(dataset_len * train_test_split) train_len = dataset_len - eval_len train_dataset, eval_dataset = random_split(self.dataset, (train_len, eval_len)) train_loader = DataLoader(train_dataset, batch_size=self.train_batch_size, shuffle=train_shuffle) eval_loader = DataLoader(eval_dataset, batch_size=self.eval_batch_size, shuffle=eval_shuffle) logging.info(f'''train_dataloader size: {len(train_loader.dataset)} | shuffle: {train_shuffle} eval_dataloader size: {len(eval_loader.dataset)} | shuffle: {eval_shuffle}''') return train_loader, eval_loader def mask_tokens(self, inputs: torch.Tensor, mlm_probability=0.15, pad=True): """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = inputs.clone() # mlm_probability defaults to 0.15 in Bert probability_matrix = torch.full(labels.shape, mlm_probability) special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) if self.tokenizer._pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) probability_matrix.masked_fill_(padding_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix).bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] if pad: input_pads = self.tokenizer.max_len - inputs.shape[-1] label_pads = self.tokenizer.max_len - labels.shape[-1] inputs = F.pad(inputs, pad=(0, input_pads), value=self.tokenizer.pad_token_id) labels = F.pad(labels, pad=(0, label_pads), value=self.tokenizer.pad_token_id) # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels def _tokenize_input_ids(self, input_ids: list, pad_to_max_length: bool = True): """ Helper function to clean up the train and eval functions :param input_ids: inputs to tokenize. :param pad_to_max_length: Whether you want to pad the inputs to the tokenizer.max_len :return: Tensor containing training data. """ inputs = torch.cat( [ self.tokenizer.encode( input_ids[i], add_special_tokens=True, max_length=self.tokenizer.max_len, pad_to_max_length=pad_to_max_length, return_tensors='pt' ) \ for i in range(len(input_ids)) ] ) return inputs def train(self, epochs, train_dataloader, eval_dataloader, log_steps, ckpt_steps, ckpt_dir=None, gradient_accumulation_steps=1): """ Trains the Reformer Model :param epochs: The number of times you wish to loop through the dataset. :param train_dataloader: (torch.utils.data.DataLoader) The data to train on. :param eval_dataloader: (torch.utils.data.DataLoader) The data to evaluate on. :param log_steps: The number of steps to iterate before logging. :param ckpt_steps: The number of steps to iterate before checkpointing. :param ckpt_dir: The directory to save the checkpoints to. :param gradient_accumulation_steps: Optional gradient accumulation. :return: Total number of steps, total loss, model """ optimizer = Adafactor(self.model.parameters()) loss_fn = nn.CrossEntropyLoss() losses = {} global_steps = 0 local_steps = 0 step_loss = 0.0 if ckpt_dir is not None: assert os.path.isdir(ckpt_dir) try: logging.info(f'{datetime.now()} | Continuing from checkpoint...') self.model.load_state_dict(torch.load(f'{ckpt_dir}/model_state_dict.pt', map_location=self.device)) optimizer.load_state_dict(torch.load(f'{ckpt_dir}/optimizer_state_dict.pt')) except Exception as e: logging.info(f'{datetime.now()} | No checkpoint was found | {e}') self.model.train() if self.n_gpu > 1: self.model = nn.DataParallel(self.model) logging.info(f'{datetime.now()} | Utilizing {self.n_gpu} GPUs') self.model.to(self.device) logging.info(f'{datetime.now()} | Moved model to: {self.device}') logging.info( f'{datetime.now()} | train_batch_size: {self.train_batch_size} | eval_batch_size: {self.eval_batch_size}') logging.info(f'{datetime.now()} | Epochs: {epochs} | log_steps: {log_steps} | ckpt_steps: {ckpt_steps}') logging.info(f'{datetime.now()} | gradient_accumulation_steps: {gradient_accumulation_steps}') for epoch in tqdm(range(epochs), desc='Epochs', position=0): logging.info(f'{datetime.now()} | Epoch: {epoch}') for step, batch in tqdm(enumerate(train_dataloader), desc='Epoch Iterator', position=1, leave=True, total=len(train_dataloader)): for data in batch: inputs = self._tokenize_input_ids(data, pad_to_max_length=True) inputs, labels = self.mask_tokens(inputs) inputs, labels = inputs.to(self.device), labels.to(self.device) output = self.model(inputs) # only calculating loss on masked tokens loss_mx = labels != -100 output = output[loss_mx].view(-1, self.tokenizer.vocab_size) labels = labels[loss_mx].view(-1) loss = loss_fn(output, labels) if gradient_accumulation_steps > 1: loss /= gradient_accumulation_steps loss.backward() step_loss += loss.item() losses[global_steps] = loss.item() local_steps += 1 global_steps += 1 if global_steps % gradient_accumulation_steps == 0: optimizer.step() self.model.zero_grad() if global_steps % log_steps == 0: if self.tb_writer: self.writer.add_scalar('Train/Loss', step_loss / local_steps, global_steps) self.writer.close() logging.info( f'''{datetime.now()} | Train Loss: {step_loss / local_steps} | Steps: {global_steps}''') with open(f'{self.log_dir}/train_results.json', 'w') as results_file: json.dump(losses, results_file) results_file.close() step_loss = 0.0 local_steps = 0 if global_steps % ckpt_steps == 0: # evaluating before every checkpoint self.evaluate(eval_dataloader) model_to_save = self.model.module if hasattr(self.model, 'module') else self.model torch.save(model_to_save.state_dict(), f'{ckpt_dir}/model_state_dict.pt') torch.save(optimizer.state_dict(), f'{ckpt_dir}/optimizer_state_dict.pt') logging.info(f'{datetime.now()} | Saved checkpoint to: {ckpt_dir}') model_to_save = self.model.module if hasattr(self.model, 'module') else self.model torch.save(model_to_save.state_dict(), f'{ckpt_dir}/model_state_dict.pt') torch.save(optimizer.state_dict(), f'{ckpt_dir}/optimizer_state_dict.pt') return self.model def evaluate(self, dataloader): """ Runs through the provided dataloader with torch.no_grad() :param dataloader: (torch.utils.data.DataLoader) Evaluation DataLoader :return: None """ loss_fn = nn.CrossEntropyLoss() if self.n_gpu > 1 and not isinstance(self.model, nn.DataParallel): self.model = nn.DataParallel(self.model) self.model.eval() eval_loss = 0.0 perplexity = 0.0 eval_steps = 0 logging.info(f'{datetime.now()} | Evaluating...') for step, batch in tqdm(enumerate(dataloader), desc='Evaluating', leave=True, total=len(dataloader)): for data in batch: inputs = self._tokenize_input_ids(data, pad_to_max_length=True) inputs, labels = self.mask_tokens(inputs) inputs, labels = inputs.to(self.device), labels.to(self.device) with torch.no_grad(): output = self.model(inputs) loss_mx = labels != -100 output_ids = output[loss_mx].view(-1, self.tokenizer.vocab_size) labels = labels[loss_mx].view(-1) tmp_eval_loss = loss_fn(output_ids, labels) tmp_perplexity = torch.exp(tmp_eval_loss) if self.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() eval_loss += tmp_eval_loss.item() perplexity += tmp_perplexity.item() eval_steps += 1 eval_loss /= eval_steps perplexity /= eval_steps if self.tb_writer: self.writer.add_scalar('Eval/Loss', eval_loss, eval_steps) self.writer.close() self.writer.add_scalar('Perplexity', perplexity, eval_steps) self.writer.close() logging.info(f'{datetime.now()} | Step: {step} | Eval Loss: {eval_loss} | Perplexity: {perplexity}') return None if __name__ == '__main__': dataset = WikiDataset(path='D:/data/enwiki') tokenizer = BertTokenizer.from_pretrained('bert-base-cased') tokenizer.max_len = 128 model = ReformerLM( num_tokens=tokenizer.vocab_size, dim=512, depth=6, heads=8, max_seq_len=tokenizer.max_len, causal=True ) trainer = ReformerTrainer(dataset, model, tokenizer, train_batch_size=32, eval_batch_size=32) train_dataloader, eval_dataloader = trainer.build_dataloaders(train_test_split=0.90) model = trainer.train(epochs=3, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, log_steps=10, ckpt_steps=100, ckpt_dir='./ckpts', gradient_accumulation_steps=1) torch.save(model, './ckpts/model.bin')
reformer-pytorch-master
pretraining/self-supervised.py
from setuptools import setup, find_packages setup( name = 'tranception-pytorch', packages = find_packages(exclude=[]), version = '0.0.8', license='MIT', description = 'Tranception - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/tranception-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'protein fitness' ], install_requires=[ 'einops>=0.4', 'einops-exts', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
tranception-pytorch-main
setup.py
from tranception_pytorch.tranception_pytorch import Tranception
tranception-pytorch-main
tranception_pytorch/__init__.py
import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange from einops_exts import rearrange_many from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d # relative positional bias class LearnedAlibiPosBias(nn.Module): def __init__(self, heads): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.slopes = nn.Parameter(slopes) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(i, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, qk_sim): h, i, j, device = *qk_sim.shape[-3:], qk_sim.device if exists(self.bias) and self.bias.shape[-1] >= j: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer('bias', bias, persistent = False) return bias # helper classes class ReluSquared(nn.Module): """ found with neural architecture search in Primer paper """ def forward(self, x): return F.relu(x) ** 2 def FeedForward(dim, mult = 4): hidden_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), ReluSquared(), nn.Linear(hidden_dim, dim) ) class DepthwiseConv1d(nn.Module): def __init__(self, dim, kernel_size, causal = True): super().__init__() assert (kernel_size % 2) == 1 self.padding = (kernel_size - 1, 0) if causal else (kernel_size // 2, kernel_size // 2) self.conv = nn.Conv1d(dim, dim, kernel_size = kernel_size, groups = dim) def forward(self, x): x = F.pad(x, self.padding) return self.conv(x) class Attention(nn.Module): def __init__( self, *, dim, heads = 8, dim_head = 64, causal = False, ds_conv_kernel_sizes = (0, 3, 5, 7) # heads were grouped into 4 groups and given a depthwise conv after the queries / keys / values projection ): super().__init__() self.groups = len(ds_conv_kernel_sizes) assert heads >= self.groups and (heads % self.groups) == 0, f'heads must be greater than {self.groups} and divisible by {self.groups}' self.scale = dim_head ** -0.5 self.causal = causal self.heads = heads self.heads_per_group = heads // self.groups inner_dim = heads * dim_head self.norm = nn.LayerNorm(dim) self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) # ds convs with different kernel sizes for 4 groups of heads self.qkv_ds_convs = nn.ModuleList([]) for _ in range(3): # for queries, keys, values ds_convs = nn.ModuleList([]) for kernel_size in ds_conv_kernel_sizes: if kernel_size == 0: ds_convs.append(nn.Identity()) continue ds_convs.append(DepthwiseConv1d(dim_head * self.heads_per_group, kernel_size, causal = causal)) self.qkv_ds_convs.append(ds_convs) # learned alibi positional bias for 4 groups of heads self.learned_alibi_pos_biases = nn.ModuleList([LearnedAlibiPosBias(heads = self.heads_per_group) for _ in range(self.groups)]) # outward projection self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): device, heads_per_group = x.device, self.heads_per_group x = self.norm(x) x = rearrange(x, 'b n d -> b d n') q, k, v = self.to_qkv(x).chunk(3, dim = 1) q, k, v = rearrange_many((q, k, v), 'b (h d) n -> b h d n', h = self.heads) # apply causal depthwise conv to queries, keys, values (a la Primer) with different kernel sizes across 4 groups of heads def apply_causal_ds_conv_to_grouped_heads(args): projs, ds_convs = args batch = projs.shape[0] projs = rearrange_many(projs.split(heads_per_group, dim = 1), 'b h d n -> b (h d) n') conv_out = [fn(t) for fn, t in zip(ds_convs, projs)] conv_out = map(lambda t: rearrange(t, 'b (h d) n -> b h d n', h = heads_per_group), conv_out) conv_out = torch.cat(tuple(conv_out), dim = 1) return rearrange(conv_out, 'b h d n -> b h n d') q, k, v = map(apply_causal_ds_conv_to_grouped_heads, zip((q, k, v), self.qkv_ds_convs)) # scale and similarity q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # learned alibi pos bias across 4 groups of heads # so heads specialize to looking at different distances of kmers grouped_sims = sim.split(self.heads // self.groups, dim = 1) grouped_sims = [(alibi(sim_group) + sim_group) for alibi, sim_group in zip(self.learned_alibi_pos_biases, grouped_sims)] sim = torch.cat(grouped_sims, dim = 1) # causal mask if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention, but of course attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # classes class Tranception(nn.Module): def __init__( self, *, dim, depth, num_tokens = 21, heads = 8, dim_head = 64, ff_mult = 4, ds_conv_kernel_sizes = (0, 3, 5, 7), causal = True ): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, heads = heads, dim_head = dim_head, ds_conv_kernel_sizes = ds_conv_kernel_sizes, causal = causal), FeedForward(dim, mult = ff_mult) ])) self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_tokens) ) def forward( self, x, mask = None ): x = self.token_emb(x) for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.to_logits(x)
tranception-pytorch-main
tranception_pytorch/tranception_pytorch.py
from setuptools import setup, find_packages setup( name = 'g-mlp-pytorch', packages = find_packages(), version = '0.1.5', license='MIT', description = 'gMLP - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/g-mlp-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'multi-layered-preceptrons' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
g-mlp-pytorch-main
setup.py
from g_mlp_pytorch import gMLP from g_mlp_pytorch.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 768 SEQ_LEN = 768 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = gMLP( num_tokens = 256, dim = 512, seq_len = SEQ_LEN, depth = 8, causal = True ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
g-mlp-pytorch-main
train.py
import torch from torch import nn import torch.nn.functional as F # helper function def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = -100, pad_value = 0): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.seq_len @torch.no_grad() @eval_decorator def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): device = start_tokens.device num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] logits = self.net(x, **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) return out def forward(self, x, **kwargs): xi, xo = x[:, :-1], x[:, 1:] out = self.net(xi, **kwargs) loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) return loss
g-mlp-pytorch-main
g_mlp_pytorch/autoregressive_wrapper.py
from g_mlp_pytorch.g_mlp_pytorch import gMLP, gMLPVision, gMLPBlock, SpatialGatingUnit
g-mlp-pytorch-main
g_mlp_pytorch/__init__.py
from random import randrange import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange, Reduce # functions def exists(val): return val is not None def pair(val): return (val, val) if not isinstance(val, tuple) else val def dropout_layers(layers, prob_survival): if prob_survival == 1: return layers num_layers = len(layers) to_drop = torch.zeros(num_layers).uniform_(0., 1.) > prob_survival # make sure at least one layer makes it if all(to_drop): rand_index = randrange(num_layers) to_drop[rand_index] = False layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop] return layers def shift(t, amount, mask = None): if amount == 0: return t return F.pad(t, (0, 0, amount, -amount), value = 0.) # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x class PreShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): if self.shifts == (0,): return self.fn(x, **kwargs) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class Attention(nn.Module): def __init__(self, dim_in, dim_out, dim_inner, causal = False): super().__init__() self.scale = dim_inner ** -0.5 self.causal = causal self.to_qkv = nn.Linear(dim_in, dim_inner * 3, bias = False) self.to_out = nn.Linear(dim_inner, dim_out) def forward(self, x): device = x.device q, k, v = self.to_qkv(x).chunk(3, dim = -1) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if self.causal: mask = torch.ones(sim.shape[-2:], device = device).triu(1).bool() sim.masked_fill_(mask[None, ...], -torch.finfo(q.dtype).max) attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) return self.to_out(out) class SpatialGatingUnit(nn.Module): def __init__( self, dim, dim_seq, causal = False, act = nn.Identity(), heads = 1, init_eps = 1e-3, circulant_matrix = False ): super().__init__() dim_out = dim // 2 self.heads = heads self.causal = causal self.norm = nn.LayerNorm(dim_out) self.act = act # parameters if circulant_matrix: self.circulant_pos_x = nn.Parameter(torch.ones(heads, dim_seq)) self.circulant_pos_y = nn.Parameter(torch.ones(heads, dim_seq)) self.circulant_matrix = circulant_matrix shape = (heads, dim_seq,) if circulant_matrix else (heads, dim_seq, dim_seq) weight = torch.zeros(shape) self.weight = nn.Parameter(weight) init_eps /= dim_seq nn.init.uniform_(self.weight, -init_eps, init_eps) self.bias = nn.Parameter(torch.ones(heads, dim_seq)) def forward(self, x, gate_res = None): device, n, h = x.device, x.shape[1], self.heads res, gate = x.chunk(2, dim = -1) gate = self.norm(gate) weight, bias = self.weight, self.bias if self.circulant_matrix: # build the circulant matrix dim_seq = weight.shape[-1] weight = F.pad(weight, (0, dim_seq), value = 0) weight = repeat(weight, '... n -> ... (r n)', r = dim_seq) weight = weight[:, :-dim_seq].reshape(h, dim_seq, 2 * dim_seq - 1) weight = weight[:, :, (dim_seq - 1):] # give circulant matrix absolute position awareness pos_x, pos_y = self.circulant_pos_x, self.circulant_pos_y weight = weight * rearrange(pos_x, 'h i -> h i ()') * rearrange(pos_y, 'h j -> h () j') if self.causal: weight, bias = weight[:, :n, :n], bias[:, :n] mask = torch.ones(weight.shape[-2:], device = device).triu_(1).bool() mask = rearrange(mask, 'i j -> () i j') weight = weight.masked_fill(mask, 0.) gate = rearrange(gate, 'b n (h d) -> b h n d', h = h) gate = einsum('b h n d, h m n -> b h m d', gate, weight) gate = gate + rearrange(bias, 'h n -> () h n ()') gate = rearrange(gate, 'b h n d -> b n (h d)') if exists(gate_res): gate = gate + gate_res return self.act(gate) * res class gMLPBlock(nn.Module): def __init__( self, *, dim, dim_ff, seq_len, heads = 1, attn_dim = None, causal = False, act = nn.Identity(), circulant_matrix = False ): super().__init__() self.proj_in = nn.Sequential( nn.Linear(dim, dim_ff), nn.GELU() ) self.attn = Attention(dim, dim_ff // 2, attn_dim, causal) if exists(attn_dim) else None self.sgu = SpatialGatingUnit(dim_ff, seq_len, causal, act, heads, circulant_matrix = circulant_matrix) self.proj_out = nn.Linear(dim_ff // 2, dim) def forward(self, x): gate_res = self.attn(x) if exists(self.attn) else None x = self.proj_in(x) x = self.sgu(x, gate_res = gate_res) x = self.proj_out(x) return x # main classes class gMLP(nn.Module): def __init__( self, *, num_tokens = None, dim, depth, seq_len, heads = 1, ff_mult = 4, attn_dim = None, prob_survival = 1., causal = False, circulant_matrix = False, shift_tokens = 0, act = nn.Identity() ): super().__init__() assert (dim % heads) == 0, 'dimension must be divisible by number of heads' dim_ff = dim * ff_mult self.seq_len = seq_len self.prob_survival = prob_survival self.to_embed = nn.Embedding(num_tokens, dim) if exists(num_tokens) else nn.Identity() token_shifts = tuple(range(0 if causal else -shift_tokens, shift_tokens + 1)) self.layers = nn.ModuleList([Residual(PreNorm(dim, PreShiftTokens(token_shifts, gMLPBlock(dim = dim, heads = heads, dim_ff = dim_ff, seq_len = seq_len, attn_dim = attn_dim, causal = causal, act = act, circulant_matrix = circulant_matrix)))) for i in range(depth)]) self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_tokens) ) if exists(num_tokens) else nn.Identity() def forward(self, x): x = self.to_embed(x) layers = self.layers if not self.training else dropout_layers(self.layers, self.prob_survival) out = nn.Sequential(*layers)(x) return self.to_logits(out) class gMLPVision(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads = 1, ff_mult = 4, channels = 3, attn_dim = None, prob_survival = 1. ): super().__init__() assert (dim % heads) == 0, 'dimension must be divisible by number of heads' image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert (image_height % patch_height) == 0 and (image_width % patch_width) == 0, 'image height and width must be divisible by patch size' num_patches = (image_height // patch_height) * (image_width // patch_width) dim_ff = dim * ff_mult self.to_patch_embed = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_height, p2 = patch_width), nn.Linear(channels * patch_height * patch_width, dim) ) self.prob_survival = prob_survival self.layers = nn.ModuleList([Residual(PreNorm(dim, gMLPBlock(dim = dim, heads = heads, dim_ff = dim_ff, seq_len = num_patches, attn_dim = attn_dim))) for i in range(depth)]) self.to_logits = nn.Sequential( nn.LayerNorm(dim), Reduce('b n d -> b d', 'mean'), nn.Linear(dim, num_classes) ) def forward(self, x): x = self.to_patch_embed(x) layers = self.layers if not self.training else dropout_layers(self.layers, self.prob_survival) x = nn.Sequential(*layers)(x) return self.to_logits(x)
g-mlp-pytorch-main
g_mlp_pytorch/g_mlp_pytorch.py
from setuptools import setup, find_packages setup( name = 'charformer-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'Charformer - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/charformer-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'learned tokenization' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
charformer-pytorch-main
setup.py
from charformer_pytorch.charformer_pytorch import GBST
charformer-pytorch-main
charformer_pytorch/__init__.py
import math from math import gcd import functools import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def lcm(*numbers): return int(functools.reduce(lambda x, y: int((x * y) / gcd(x, y)), numbers, 1)) def masked_mean(tensor, mask, dim = -1): diff_len = len(tensor.shape) - len(mask.shape) mask = mask[(..., *((None,) * diff_len))] tensor.masked_fill_(~mask, 0.) total_el = mask.sum(dim = dim) mean = tensor.sum(dim = dim) / total_el.clamp(min = 1.) mean.masked_fill_(total_el == 0, 0.) return mean def next_divisible_length(seqlen, multiple): return math.ceil(seqlen / multiple) * multiple def pad_to_multiple(tensor, multiple, *, seq_dim, dim = -1, value = 0.): seqlen = tensor.shape[seq_dim] length = next_divisible_length(seqlen, multiple) if length == seqlen: return tensor remainder = length - seqlen pad_offset = (0,) * (-1 - dim) * 2 return F.pad(tensor, (*pad_offset, 0, remainder), value = value) # helper classes class Pad(nn.Module): def __init__(self, padding, value = 0.): super().__init__() self.padding = padding self.value = value def forward(self, x): return F.pad(x, self.padding, value = self.value) class DepthwiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size): super().__init__() self.conv = nn.Conv1d(dim_in, dim_out, kernel_size, groups = dim_in) self.proj_out = nn.Conv1d(dim_out, dim_out, 1) def forward(self, x): x = self.conv(x) return self.proj_out(x) # main class class GBST(nn.Module): def __init__( self, *, num_tokens, dim, max_block_size = None, blocks = None, downsample_factor = 4, score_consensus_attn = True ): super().__init__() assert exists(max_block_size) ^ exists(blocks), 'either max_block_size or blocks are given on initialization' self.token_emb = nn.Embedding(num_tokens, dim) if exists(blocks): assert isinstance(blocks, tuple), 'blocks must be a tuple of block sizes' self.blocks = tuple(map(lambda el: el if isinstance(el, tuple) else (el, 0), blocks)) assert all([(offset < block_size) for block_size, offset in self.blocks]), 'offset must be always smaller than the block size' max_block_size = max(list(map(lambda t: t[0], self.blocks))) else: self.blocks = tuple(map(lambda el: (el, 0), range(1, max_block_size + 1))) self.pos_conv = nn.Sequential( Pad((0, 0, 0, max_block_size - 1)), Rearrange('b n d -> b d n'), DepthwiseConv1d(dim, dim, kernel_size = max_block_size), Rearrange('b d n -> b n d') ) self.score_fn = nn.Sequential( nn.Linear(dim, 1), Rearrange('... () -> ...') ) self.score_consensus_attn = score_consensus_attn assert downsample_factor <= max_block_size, 'final downsample factor should be less than the maximum block size' self.block_pad_multiple = lcm(*[block_size for block_size, _ in self.blocks]) self.downsample_factor = downsample_factor def forward(self, x, mask = None): b, n, block_mult, ds_factor, device = *x.shape, self.block_pad_multiple, self.downsample_factor, x.device m = next_divisible_length(n, ds_factor) # get character token embeddings x = self.token_emb(x) # do a conv to generate the positions for the tokens x = self.pos_conv(x) # pad both sequence and mask to length visibile by all block sizes from 0 to max block size x = pad_to_multiple(x, block_mult, seq_dim = 1, dim = -2) if exists(mask): mask = pad_to_multiple(mask, block_mult, seq_dim = 1, dim = -1, value = False) # compute representations for all blocks by mean pooling block_masks = [] block_reprs = [] for block_size, offset in self.blocks: # clone the input sequence as well as the mask, in order to pad for offsets block_x = x.clone() if exists(mask): block_mask = mask.clone() # pad for offsets, if needed need_padding = offset > 0 if need_padding: left_offset, right_offset = (block_size - offset), offset block_x = F.pad(block_x, (0, 0, left_offset, right_offset), value = 0.) if exists(mask): block_mask = F.pad(block_mask, (left_offset, right_offset), value = False) # group input sequence into blocks blocks = rearrange(block_x, 'b (n m) d -> b n m d', m = block_size) # either mean pool the blocks, or do a masked mean if exists(mask): mask_blocks = rearrange(block_mask, 'b (n m) -> b n m', m = block_size) block_repr = masked_mean(blocks, mask_blocks, dim = -2) else: block_repr = blocks.mean(dim = -2) # append the block representations, as well as the pooled block masks block_repr = repeat(block_repr, 'b n d -> b (n m) d', m = block_size) if need_padding: block_repr = block_repr[:, left_offset:-right_offset] block_reprs.append(block_repr) if exists(mask): mask_blocks = torch.any(mask_blocks, dim = -1) mask_blocks = repeat(mask_blocks, 'b n -> b (n m)', m = block_size) if need_padding: mask_blocks = mask_blocks[:, left_offset:-right_offset] block_masks.append(mask_blocks) # stack all the block representations block_reprs = torch.stack(block_reprs, dim = 2) # calculate scores and softmax across the block size dimension scores = self.score_fn(block_reprs) if exists(mask): block_masks = torch.stack(block_masks, dim = 2) max_neg_value = -torch.finfo(scores.dtype).max scores = scores.masked_fill(~block_masks, max_neg_value) scores = scores.softmax(dim = 2) # do the cheap consensus attention, eq (5) in paper if self.score_consensus_attn: score_sim = einsum('b i d, b j d -> b i j', scores, scores) if exists(mask): cross_mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') max_neg_value = -torch.finfo(score_sim.dtype).max score_sim = score_sim.masked_fill(~cross_mask, max_neg_value) score_attn = score_sim.softmax(dim = -1) scores = einsum('b i j, b j m -> b i m', score_attn, scores) # multiply the block representations by the position-wise scores scores = rearrange(scores, 'b n m -> b n m ()') x = (block_reprs * scores).sum(dim = 2) # truncate to length divisible by downsample factor x = x[:, :m] if exists(mask): mask = mask[:, :m] # final mean pooling downsample x = rearrange(x, 'b (n m) d -> b n m d', m = ds_factor) if exists(mask): mask = rearrange(mask, 'b (n m) -> b n m', m = ds_factor) x = masked_mean(x, mask, dim = 2) mask = torch.any(mask, dim = -1) else: x = x.mean(dim = -2) return x, mask
charformer-pytorch-main
charformer_pytorch/charformer_pytorch.py
from setuptools import setup, find_packages setup( name = 'retrieval-augmented-ddpm', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Retrieval-Augmented Denoising Diffusion Probabilistic Models', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/retrieval-augmented-ddpm', keywords = [ 'artificial intelligence', 'deep learning', 'denoising diffusion', 'retrieval' ], install_requires=[ 'clip-retrieval', 'einops>=0.4', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
retrieval-augmented-ddpm-main
setup.py
retrieval-augmented-ddpm-main
retrieval_augmented_ddpm/retrieval_augmented_ddpm.py
retrieval-augmented-ddpm-main
retrieval_augmented_ddpm/__init__.py
import argparse from pathlib import Path from tqdm import tqdm # torch import torch from einops import repeat # vision imports from PIL import Image from torchvision.utils import make_grid, save_image # dalle related classes and utils from dalle_pytorch import __version__ from dalle_pytorch import DiscreteVAE, OpenAIDiscreteVAE, VQGanVAE, DALLE from dalle_pytorch.tokenizer import tokenizer, HugTokenizer, YttmTokenizer, ChineseTokenizer # argument parsing parser = argparse.ArgumentParser() parser.add_argument('--dalle_path', type = str, required = True, help='path to your trained DALL-E') parser.add_argument('--vqgan_model_path', type=str, default = None, help='path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)') parser.add_argument('--vqgan_config_path', type=str, default = None, help='path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)') parser.add_argument('--text', type = str, required = True, help='your text prompt') parser.add_argument('--num_images', type = int, default = 128, required = False, help='number of images') parser.add_argument('--batch_size', type = int, default = 4, required = False, help='batch size') parser.add_argument('--top_k', type = float, default = 0.9, required = False, help='top k filter threshold') parser.add_argument('--outputs_dir', type = str, default = './outputs', required = False, help='output directory') parser.add_argument('--bpe_path', type = str, help='path to your huggingface BPE json file') parser.add_argument('--hug', dest='hug', action = 'store_true') parser.add_argument('--chinese', dest='chinese', action = 'store_true') parser.add_argument('--taming', dest='taming', action='store_true') parser.add_argument('--gentxt', dest='gentxt', action='store_true') args = parser.parse_args() # helper fns def exists(val): return val is not None # tokenizer if exists(args.bpe_path): klass = HugTokenizer if args.hug else YttmTokenizer tokenizer = klass(args.bpe_path) elif args.chinese: tokenizer = ChineseTokenizer() # load DALL-E dalle_path = Path(args.dalle_path) assert dalle_path.exists(), 'trained DALL-E must exist' load_obj = torch.load(str(dalle_path)) dalle_params, vae_params, weights, vae_class_name, version = load_obj.pop('hparams'), load_obj.pop('vae_params'), load_obj.pop('weights'), load_obj.pop('vae_class_name', None), load_obj.pop('version', None) # friendly print if exists(version): print(f'Loading a model trained with DALLE-pytorch version {version}') else: print('You are loading a model trained on an older version of DALL-E pytorch - it may not be compatible with the most recent version') # load VAE if args.taming: vae = VQGanVAE(args.vqgan_model_path, args.vqgan_config_path) elif vae_params is not None: vae = DiscreteVAE(**vae_params) else: vae = OpenAIDiscreteVAE() assert not (exists(vae_class_name) and vae.__class__.__name__ != vae_class_name), f'you trained DALL-E using {vae_class_name} but are trying to generate with {vae.__class__.__name__} - please make sure you are passing in the correct paths and settings for the VAE to use for generation' # reconstitute DALL-E dalle = DALLE(vae = vae, **dalle_params).cuda() dalle.load_state_dict(weights) # generate images image_size = vae.image_size texts = args.text.split('|') for j, text in tqdm(enumerate(texts)): if args.gentxt: text_tokens, gen_texts = dalle.generate_texts(tokenizer, text=text, filter_thres = args.top_k) text = gen_texts[0] else: text_tokens = tokenizer.tokenize([text], dalle.text_seq_len).cuda() text_tokens = repeat(text_tokens, '() n -> b n', b = args.num_images) outputs = [] for text_chunk in tqdm(text_tokens.split(args.batch_size), desc = f'generating images for - {text}'): output = dalle.generate_images(text_chunk, filter_thres = args.top_k) outputs.append(output) outputs = torch.cat(outputs) # save all images file_name = text outputs_dir = Path(args.outputs_dir) / file_name.replace(' ', '_')[:(100)] outputs_dir.mkdir(parents = True, exist_ok = True) for i, image in tqdm(enumerate(outputs), desc = 'saving images'): save_image(image, outputs_dir / f'{i}.png', normalize=True) with open(outputs_dir / 'caption.txt', 'w') as f: f.write(file_name) print(f'created {args.num_images} images at "{str(outputs_dir)}"')
DALLE-pytorch-main
generate.py
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
34
Edit dataset card

Models trained or fine-tuned on kye/all-lucidrain-python-3