prefix
stringlengths
72
385
suffix
stringlengths
10
385
reference
stringlengths
6
97
import argparse import math import os import yaml from tqdm import tqdm
from torch.utils.data import DataLoader from transformers import ( AutoTokenizer, AutoModelForCausalLM, default_data_collator,
import torch
from torch.utils.data import DataLoader from transformers import ( AutoTokenizer, AutoModelForCausalLM, default_data_collator,
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs from src.data import load_data from src.tokenizer import AudioTokenizer, get_start_tokens from src.utils import save_checkpoint, fix_checkpoint, get_exp_name # Parse arguments
get_scheduler,
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs from src.data import load_data from src.tokenizer import AudioTokenizer, get_start_tokens from src.utils import save_checkpoint, fix_checkpoint, get_exp_name # Parse arguments
parser.add_argument( "--config", type=str, help="Path to the config.yaml file", required=True args = parser.parse_args() # Load config with open(args.config, "r") as file:
parser = argparse.ArgumentParser(description="Train a model with configuration.")
parser.add_argument( "--config", type=str, help="Path to the config.yaml file", required=True args = parser.parse_args() # Load config with open(args.config, "r") as file:
base_model = config["base_model"] checkpoint_path = config.get("checkpoint_path") save_dir = config["save_dir"] data = config["data"] start_audio_token = config["start_audio_token"]
config = yaml.safe_load(file)
base_model = config["base_model"] checkpoint_path = config.get("checkpoint_path") save_dir = config["save_dir"] data = config["data"] start_audio_token = config["start_audio_token"]
path_to_cache = config["path_to_cache"] checkpointing_steps = int(config['checkpointing_steps']) max_grad_norm = float(config['max_grad_norm']) torch.backends.cuda.matmul.allow_tf32 = config["allow_tf32"] torch.backends.cudnn.allow_tf32 = config["allow_tf32"]
end_audio_token = config["end_audio_token"]
path_to_cache = config["path_to_cache"] checkpointing_steps = int(config['checkpointing_steps']) max_grad_norm = float(config['max_grad_norm']) torch.backends.cuda.matmul.allow_tf32 = config["allow_tf32"] torch.backends.cudnn.allow_tf32 = config["allow_tf32"]
model, dataloader, accelerator, optimizer, lr_scheduler,
def train(
model, dataloader, accelerator, optimizer, lr_scheduler,
progress_bar, max_train_steps, save_dir model.train() total_loss = 0
completed_steps,
progress_bar, max_train_steps, save_dir model.train() total_loss = 0
for step, batch in enumerate(dataloader): with accelerator.accumulate(model): # Forward pass outputs = model(**batch) loss = outputs.loss
acc_loss = 0
for step, batch in enumerate(dataloader): with accelerator.accumulate(model): # Forward pass outputs = model(**batch) loss = outputs.loss
total_loss += last_loss acc_loss += last_loss accelerator.backward(loss) del batch, loss, outputs torch.cuda.empty_cache()
last_loss = loss.detach().float()
total_loss += last_loss acc_loss += last_loss accelerator.backward(loss) del batch, loss, outputs torch.cuda.empty_cache()
accelerator.clip_grad_norm_(model.parameters(), max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1)
acc_loss = acc_loss / int(config["gradient_accumulation_steps"]) accelerator.log({"loss": acc_loss.item()}) acc_loss = 0 if completed_steps % checkpointing_steps == 0: save_checkpoint(model, accelerator, tokenizer, optimizer, lr_scheduler, save_dir, checkpointing_steps)
completed_steps += 1
acc_loss = acc_loss / int(config["gradient_accumulation_steps"]) accelerator.log({"loss": acc_loss.item()}) acc_loss = 0 if completed_steps % checkpointing_steps == 0: save_checkpoint(model, accelerator, tokenizer, optimizer, lr_scheduler, save_dir, checkpointing_steps)
if completed_steps >= max_train_steps: break return total_loss / len(dataloader), completed_steps def eval( model,
torch.cuda.empty_cache()
if completed_steps >= max_train_steps: break return total_loss / len(dataloader), completed_steps def eval( model,
accelerator, epoch, completed_steps, train_loss, model.eval()
dataloader,
accelerator, epoch, completed_steps, train_loss, model.eval()
eval_progress_bar = tqdm(dataloader, desc=f"Evaluating Epoch {epoch}", leave=False) for batch in eval_progress_bar: with torch.no_grad(): # Forward pass outputs = model(**batch)
losses = []
eval_progress_bar = tqdm(dataloader, desc=f"Evaluating Epoch {epoch}", leave=False) for batch in eval_progress_bar: with torch.no_grad(): # Forward pass outputs = model(**batch)
losses.append(accelerator.gather_for_metrics(loss.repeat(int(config["eval_batch_size"])))) del outputs losses = torch.cat(losses) try: eval_loss = torch.mean(losses)
loss = outputs.loss
losses.append(accelerator.gather_for_metrics(loss.repeat(int(config["eval_batch_size"])))) del outputs losses = torch.cat(losses) try: eval_loss = torch.mean(losses)
except OverflowError: perplexity = float("inf") print(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") base_log = { "perplexity": perplexity,
perplexity = math.exp(eval_loss)
except OverflowError: perplexity = float("inf") print(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") base_log = { "perplexity": perplexity,
"train_loss": train_loss.item(), "epoch": epoch, "step": completed_steps, } accelerator.log(base_log, step=completed_steps)
"eval_loss": eval_loss.item(),
"train_loss": train_loss.item(), "epoch": epoch, "step": completed_steps, } accelerator.log(base_log, step=completed_steps)
import datetime timeout = datetime.timedelta(seconds=100000000) accelerator = Accelerator( gradient_accumulation_steps=int(config["gradient_accumulation_steps"]), mixed_precision="no",
if __name__ == "__main__":
import datetime timeout = datetime.timedelta(seconds=100000000) accelerator = Accelerator( gradient_accumulation_steps=int(config["gradient_accumulation_steps"]), mixed_precision="no",
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False), InitProcessGroupKwargs(timeout=timeout)], ) device = accelerator.device exp_save_dir = os.path.join(save_dir, get_exp_name(config))
log_with="wandb",
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False), InitProcessGroupKwargs(timeout=timeout)], ) device = accelerator.device exp_save_dir = os.path.join(save_dir, get_exp_name(config))
tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=path_to_cache) model = AutoModelForCausalLM.from_pretrained( base_model, attn_implementation="sdpa", torch_dtype=torch.bfloat16, cache_dir=path_to_cache ) model.gradient_checkpointing_enable()
os.makedirs(exp_save_dir, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=path_to_cache) model = AutoModelForCausalLM.from_pretrained( base_model, attn_implementation="sdpa", torch_dtype=torch.bfloat16, cache_dir=path_to_cache ) model.gradient_checkpointing_enable()
{"additional_special_tokens": [start_audio_token, end_audio_token]} ) n_tokens = len(tokenizer) print("Not audio tokens:", n_tokens) start_audio_token_id = tokenizer(start_audio_token)["input_ids"][-1]
tokenizer.add_special_tokens(
{"additional_special_tokens": [start_audio_token, end_audio_token]} ) n_tokens = len(tokenizer) print("Not audio tokens:", n_tokens) start_audio_token_id = tokenizer(start_audio_token)["input_ids"][-1]
tokens_config = get_start_tokens(config["quantizer"], n_tokens) quantizer = AudioTokenizer(config["quantizer"], tokens_config) codebook_size = config["quantizer"]["speech"]["n_new_tokens"] + config["quantizer"]["wav"]["n_new_tokens"] train_dataset, val_dataset = load_data(data, tokenizer, quantizer, config) model.resize_token_embeddings(n_tokens + codebook_size)
end_audio_token_id = tokenizer(end_audio_token)["input_ids"][-1]
tokens_config = get_start_tokens(config["quantizer"], n_tokens) quantizer = AudioTokenizer(config["quantizer"], tokens_config) codebook_size = config["quantizer"]["speech"]["n_new_tokens"] + config["quantizer"]["wav"]["n_new_tokens"] train_dataset, val_dataset = load_data(data, tokenizer, quantizer, config) model.resize_token_embeddings(n_tokens + codebook_size)
model = fix_checkpoint(model, checkpoint_path) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator,
if checkpoint_path is not None:
model = fix_checkpoint(model, checkpoint_path) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator,
num_workers=16 ) eval_dataloader = DataLoader( val_dataset, collate_fn=default_data_collator,
batch_size=int(config["train_batch_size"]),
num_workers=16 ) eval_dataloader = DataLoader( val_dataset, collate_fn=default_data_collator,
num_workers=16 ) no_decay = ["bias", "layer_norm.weight"] optimizer_grouped_parameters = [ {
batch_size=int(config["eval_batch_size"]),
num_workers=16 ) no_decay = ["bias", "layer_norm.weight"] optimizer_grouped_parameters = [ {
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": float(config["weight_decay"]),
"params": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": float(config["weight_decay"]),
{ "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad
},
{ "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad
"weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW( optimizer_grouped_parameters, lr=float(config["learning_rate"]), # fused=True
],
"weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW( optimizer_grouped_parameters, lr=float(config["learning_rate"]), # fused=True
num_update_steps_per_epoch = math.ceil( len(train_dataloader) / int(config["gradient_accumulation_steps"]) ) max_train_steps = int(config["num_train_epochs"]) * num_update_steps_per_epoch lr_scheduler = get_scheduler(
)
num_update_steps_per_epoch = math.ceil( len(train_dataloader) / int(config["gradient_accumulation_steps"]) ) max_train_steps = int(config["num_train_epochs"]) * num_update_steps_per_epoch lr_scheduler = get_scheduler(
optimizer=optimizer, num_warmup_steps=int(config["num_warmup_steps"]) * accelerator.num_processes, num_training_steps=max_train_steps * accelerator.num_processes, ) if checkpoint_path is not None:
name=config["lr_scheduler_type"],
optimizer=optimizer, num_warmup_steps=int(config["num_warmup_steps"]) * accelerator.num_processes, num_training_steps=max_train_steps * accelerator.num_processes, ) if checkpoint_path is not None:
sceduler_state = torch.load(os.path.join(checkpoint_path, "scheduler.pt")) optimizer.load_state_dict(optim_state) lr_scheduler.load_state_dict(sceduler_state) # model = freeze(model, freeze_other=False, freeze_ff=True, freeze_ff_layers=[31]) (
optim_state = torch.load(os.path.join(checkpoint_path, "optimizer.pt"))
sceduler_state = torch.load(os.path.join(checkpoint_path, "scheduler.pt")) optimizer.load_state_dict(optim_state) lr_scheduler.load_state_dict(sceduler_state) # model = freeze(model, freeze_other=False, freeze_ff=True, freeze_ff_layers=[31]) (
optimizer, train_dataloader, eval_dataloader, lr_scheduler, ) = accelerator.prepare(
model,
optimizer, train_dataloader, eval_dataloader, lr_scheduler, ) = accelerator.prepare(
) num_update_steps_per_epoch = math.ceil( len(train_dataloader) / int(config["gradient_accumulation_steps"]) ) max_train_steps = config["num_train_epochs"] * num_update_steps_per_epoch
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
) num_update_steps_per_epoch = math.ceil( len(train_dataloader) / int(config["gradient_accumulation_steps"]) ) max_train_steps = config["num_train_epochs"] * num_update_steps_per_epoch
accelerator.init_trackers( config["wandb_project_name"], {"lr_scheduler_type": config["lr_scheduler_type"]} ) total_batch_size = ( config["train_batch_size"]
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
accelerator.init_trackers( config["wandb_project_name"], {"lr_scheduler_type": config["lr_scheduler_type"]} ) total_batch_size = ( config["train_batch_size"]
* int(config["gradient_accumulation_steps"]) ) print("***** Running training *****") print(f" Num examples = {len(train_dataset)}") print(f" Num Epochs = {num_train_epochs}")
* accelerator.num_processes
* int(config["gradient_accumulation_steps"]) ) print("***** Running training *****") print(f" Num examples = {len(train_dataset)}") print(f" Num Epochs = {num_train_epochs}")
print( f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" ) print(f" Gradient Accumulation steps = {config['gradient_accumulation_steps']}") print(f" Total optimization steps = {max_train_steps}")
print(f" Instantaneous batch size per device = {config['train_batch_size']}")
print( f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" ) print(f" Gradient Accumulation steps = {config['gradient_accumulation_steps']}") print(f" Total optimization steps = {max_train_steps}")
range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 starting_epoch = 0 for epoch in range(starting_epoch, num_train_epochs):
progress_bar = tqdm(
range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 starting_epoch = 0 for epoch in range(starting_epoch, num_train_epochs):
model, train_dataloader, accelerator, optimizer, lr_scheduler,
train_loss, completed_steps = train(
model, train_dataloader, accelerator, optimizer, lr_scheduler,
progress_bar, max_train_steps, exp_save_dir ) print(f"EPOCH {epoch + 1} train loss:", train_loss)
completed_steps,
progress_bar, max_train_steps, exp_save_dir ) print(f"EPOCH {epoch + 1} train loss:", train_loss)
model, eval_dataloader, accelerator, epoch, completed_steps,
eval(
model, eval_dataloader, accelerator, epoch, completed_steps,
)
train_loss,
import argparse import torch import torchaudio import yaml from transformers import AutoTokenizer, AutoModelForCausalLM
start_audio_token = "<soa>" end_audio_token = "<eoa>" end_sequence_token = "<eos>" device = "cuda" parser = argparse.ArgumentParser(description="Train a model with configuration.")
from src.tokenizer import get_start_tokens, AudioTokenizer
start_audio_token = "<soa>" end_audio_token = "<eoa>" end_sequence_token = "<eos>" device = "cuda" parser = argparse.ArgumentParser(description="Train a model with configuration.")
"--config", type=str, help="Path to the config.yaml file", required=True parser.add_argument( "--asr", action="store_true", help="asr/tts", parser.add_argument( "--audio_path", type=str, help="Path to audio if asr is used",
parser.add_argument(
"--config", type=str, help="Path to the config.yaml file", required=True parser.add_argument( "--asr", action="store_true", help="asr/tts", parser.add_argument( "--audio_path", type=str, help="Path to audio if asr is used",
"--text", type=str, help="Text if tts is used", args = parser.parse_args() # Load config with open(args.config, "r") as file: config = yaml.safe_load(file)
parser.add_argument(
"--text", type=str, help="Text if tts is used", args = parser.parse_args() # Load config with open(args.config, "r") as file: config = yaml.safe_load(file)
text_tokenized = tokenizer(text, return_tensors="pt") text_input_tokens = text_tokenized["input_ids"].to(device) soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) text_tokens = torch.cat([text_input_tokens, soa], dim=1)
def infer_text_to_audio(text, model, tokenizer, quantizer, max_seq_length=1024):
text_tokenized = tokenizer(text, return_tensors="pt") text_input_tokens = text_tokenized["input_ids"].to(device) soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) text_tokens = torch.cat([text_input_tokens, soa], dim=1)
output_audio_tokens = model.generate( text_tokens, attention_mask=attention_mask, max_new_tokens=max_seq_length, repetition_penalty=1.1,
attention_mask = torch.ones(text_tokens.size(), device=device)
output_audio_tokens = model.generate( text_tokens, attention_mask=attention_mask, max_new_tokens=max_seq_length, repetition_penalty=1.1,
num_beams=5, no_repeat_ngram_size=3, ) audio_signal = decode_tts(output_audio_tokens[0], quantizer, 3, len(tokenizer), soa, eoa) return audio_signal
length_penalty=1.2,
num_beams=5, no_repeat_ngram_size=3, ) audio_signal = decode_tts(output_audio_tokens[0], quantizer, 3, len(tokenizer), soa, eoa) return audio_signal
audio_data, sample_rate = torchaudio.load(audio_path) audio = audio_data.view(1, -1).float().to(device) bandwidth_id = torch.tensor([0]) _, codes = quantizer.encode_infer(audio, bandwidth_id=bandwidth_id) raw_audio_tokens = codes + len(tokenizer) + 1024
def infer_audio_to_text(audio_path, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
audio_data, sample_rate = torchaudio.load(audio_path) audio = audio_data.view(1, -1).float().to(device) bandwidth_id = torch.tensor([0]) _, codes = quantizer.encode_infer(audio, bandwidth_id=bandwidth_id) raw_audio_tokens = codes + len(tokenizer) + 1024
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) audio_tokens = torch.cat([soa, raw_audio_tokens.view(1, -1), eoa], dim=1) tokens = torch.cat([audio_tokens], dim=1) attention_mask = torch.ones(tokens.size(), device=device) output_text_tokens = model.generate(
soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device) audio_tokens = torch.cat([soa, raw_audio_tokens.view(1, -1), eoa], dim=1) tokens = torch.cat([audio_tokens], dim=1) attention_mask = torch.ones(tokens.size(), device=device) output_text_tokens = model.generate(
attention_mask=attention_mask, max_new_tokens=max_seq_length, do_sample=False, num_beams=5, no_repeat_ngram_size=4, length_penalty=2.0,
tokens,
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
35
Edit dataset card