File size: 33,015 Bytes
aad0211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb73c7
aad0211
 
 
 
 
 
4849086
0bb73c7
 
 
 
4849086
0bb73c7
 
 
 
4849086
0bb73c7
 
 
 
aad0211
 
 
 
 
4849086
 
 
 
aad0211
 
4849086
 
aad0211
 
 
4849086
aad0211
0bb73c7
4849086
 
aad0211
 
4849086
 
 
 
 
 
 
 
 
 
 
 
0bb73c7
4849086
 
 
 
 
 
 
 
0bb73c7
 
4849086
0bb73c7
 
4849086
 
 
 
 
 
 
0bb73c7
4849086
 
 
 
 
 
 
 
 
 
 
 
 
0bb73c7
4849086
 
 
 
 
 
 
 
0bb73c7
4849086
0bb73c7
4849086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb73c7
4849086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad0211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## WebDataset\n",
    "\n",
    "The dataset can be exported to a `.tar` archive and iterated with the `webdataset`\n",
    "package.\n",
    "\n",
    "After building the WebDataset-formatted archives using `make webdataset`, the dataset can be iterated as follows."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sample csvps-val/000030\n",
      "['000000', '000001', '000002', '000003', '000004', '000005', '000006', '000007',\n",
      " '000008', '000009', '000010', '000011', '000012', '000013', '000014', '000015',\n",
      " '000016', '000017', '000018', '000019', '000020', '000021', '000022', '000023',\n",
      " '000024', '000025', '000026', '000027', '000028', '000029']\n",
      "Sample csvps-val/000031\n",
      "['000000', '000001', '000002', '000003', '000004', '000005', '000006', '000007',\n",
      " '000008', '000009', '000010', '000011', '000012', '000013', '000014', '000015',\n",
      " '000016', '000017', '000018', '000019', '000020', '000021', '000022', '000023',\n",
      " '000024', '000025', '000026', '000027', '000028', '000029']\n",
      "Sample csvps-val/000032\n",
      "['000000', '000001', '000002', '000003', '000004', '000005', '000006', '000007',\n",
      " '000008', '000009', '000010', '000011', '000012', '000013', '000014', '000015',\n",
      " '000016', '000017', '000018', '000019', '000020', '000021', '000022', '000023',\n",
      " '000024', '000025', '000026', '000027', '000028', '000029']\n"
     ]
    }
   ],
   "source": [
    "import webdataset as wds\n",
    "import json\n",
    "\n",
    "from pprint import pformat\n",
    "import os\n",
    "\n",
    "# Create iterable dataset\n",
    "shard_dir = \"shards/val\"\n",
    "ds = wds.WebDataset([os.path.join(shard_dir, shard_file) for shard_file in os.listdir(shard_dir)], shardshuffle=False, verbose=True)\n",
    "\n",
    "# Iterate over the dataset and print the keys and the first few samples\n",
    "for i, sample in enumerate(ds):\n",
    "    if i > 2:  \n",
    "        break\n",
    "    meta_data = json.loads(sample[\"frames.json\"].decode())\n",
    "    print(\"Sample \" + sample[\"__key__\"])\n",
    "    print(pformat(meta_data, compact=True))\n",
    "    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Sample frames\n",
    "\n",
    "We can use `webdataset`'s compose helper to split the sequences into individual (pairs of) frames."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "__key__ (<class 'str'>) csvps-val/000030/000000:000001\n",
      "camera.json (<class 'bytes'>) ...\n",
      "metadata.json (<class 'list'>) 2\n",
      "vehicle.json (<class 'list'>) 2\n",
      "image.png (<class 'list'>) 2\n",
      "panoptic.png (<class 'list'>) 2\n",
      "depth.tiff (<class 'list'>) 2\n"
     ]
    }
   ],
   "source": [
    "import collections\n",
    "import itertools\n",
    "\n",
    "def find_frame_keys(keys, frames):\n",
    "    r\"\"\"\n",
    "    Returns a mapping from frame number to the keys of the sample that correspond to \n",
    "    that frame.\n",
    "    \"\"\"\n",
    "    meta_keys = set()\n",
    "    frame_keys = collections.defaultdict(list)\n",
    "    for key in keys:\n",
    "        if key.startswith(\"__\"):\n",
    "            continue\n",
    "        if \".\" not in key:\n",
    "            meta_keys.add(key)\n",
    "            continue \n",
    "        stem, other = key.split(\".\", 1)\n",
    "        if stem in frames:\n",
    "            frame_keys[stem].append(other)\n",
    "        else:\n",
    "            meta_keys.add(key)\n",
    "    return dict(frame_keys), meta_keys\n",
    "\n",
    "\n",
    "def generate_range(src, length: int = 2, *, missing_ok: bool =True):\n",
    "    for sample in src:\n",
    "        frames = json.loads(sample.pop(\"frames.json\").decode())\n",
    "        key = sample[\"__key__\"]\n",
    "        frame_keys, meta_keys = find_frame_keys(sample.keys(), frames) \n",
    "        \n",
    "        pair_keys = set(itertools.chain.from_iterable(frame_keys.values()))\n",
    "        meta_data = {key: sample[key] for key in meta_keys}\n",
    "\n",
    "        frame_ids = list(frame_keys.keys())\n",
    "\n",
    "        for i in range(0, len(frame_keys) - length):\n",
    "            ids = frame_ids[i:i + length]\n",
    "\n",
    "            pair_data = {\n",
    "                \"__key__\": f\"{key}/{ids[0]}:{ids[-1]}\" if len(ids) > 1 else f\"{key}/{ids[0]}\",\n",
    "                **meta_data,\n",
    "                **{\n",
    "                    source_key: [sample.get(f\"{frame}.{source_key}\", None) for frame in ids]\n",
    "                    for source_key in pair_keys\n",
    "                }\n",
    "            }\n",
    "\n",
    "            yield pair_data\n",
    "\n",
    "ds_per_frame = ds.compose(generate_range)\n",
    "\n",
    "sample = next(iter(ds_per_frame))\n",
    "\n",
    "for key, value in sample.items():\n",
    "    print(f\"{key} ({type(value)})\", end=\" \")\n",
    "    if isinstance(value, list):\n",
    "        print(len(value))\n",
    "    elif isinstance(value, bytes):\n",
    "        print(\"...\")\n",
    "    else:\n",
    "        print(value)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Hugging Face Datasets\n",
    "\n",
    "The WebDataset can be used directly in Hugging Face Datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "86f83a11f89e4f37b4acc752f5316585",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Resolving data files:   0%|          | 0/40 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c2914d517b4e436388dbf345bbb856c5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading data:   0%|          | 0/40 [00:00<?, ?files/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0d2ca2ef894e49beae715e904168e870",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generating train split: 0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "DatasetGenerationError",
     "evalue": "An error occurred while generating the dataset",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1625\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m   1624\u001b[0m example \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mfeatures\u001b[38;5;241m.\u001b[39mencode_example(record) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mfeatures \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m record\n\u001b[0;32m-> 1625\u001b[0m \u001b[43mwriter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexample\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1626\u001b[0m num_examples_progress_update \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:537\u001b[0m, in \u001b[0;36mArrowWriter.write\u001b[0;34m(self, example, key, writer_batch_size)\u001b[0m\n\u001b[1;32m    535\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhkey_record \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 537\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_examples_on_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:495\u001b[0m, in \u001b[0;36mArrowWriter.write_examples_on_file\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    491\u001b[0m         batch_examples[col] \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m    492\u001b[0m             row[\u001b[38;5;241m0\u001b[39m][col]\u001b[38;5;241m.\u001b[39mto_pylist()[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(row[\u001b[38;5;241m0\u001b[39m][col], (pa\u001b[38;5;241m.\u001b[39mArray, pa\u001b[38;5;241m.\u001b[39mChunkedArray)) \u001b[38;5;28;01melse\u001b[39;00m row[\u001b[38;5;241m0\u001b[39m][col]\n\u001b[1;32m    493\u001b[0m             \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_examples\n\u001b[1;32m    494\u001b[0m         ]\n\u001b[0;32m--> 495\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch_examples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch_examples\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    496\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_examples \u001b[38;5;241m=\u001b[39m []\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:609\u001b[0m, in \u001b[0;36mArrowWriter.write_batch\u001b[0;34m(self, batch_examples, writer_batch_size)\u001b[0m\n\u001b[1;32m    608\u001b[0m pa_table \u001b[38;5;241m=\u001b[39m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n\u001b[0;32m--> 609\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter_batch_size\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:627\u001b[0m, in \u001b[0;36mArrowWriter.write_table\u001b[0;34m(self, pa_table, writer_batch_size)\u001b[0m\n\u001b[1;32m    626\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_examples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m pa_table\u001b[38;5;241m.\u001b[39mnum_rows\n\u001b[0;32m--> 627\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpa_writer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter_batch_size\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/pyarrow/ipc.pxi:529\u001b[0m, in \u001b[0;36mpyarrow.lib._CRecordBatchWriter.write_table\u001b[0;34m()\u001b[0m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/pyarrow/error.pxi:89\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/fsspec/implementations/local.py:422\u001b[0m, in \u001b[0;36mLocalFileOpener.write\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    421\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrite\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m--> 422\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[0;31mOSError\u001b[0m: [Errno 122] Disk quota exceeded",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1634\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m   1633\u001b[0m num_shards \u001b[38;5;241m=\u001b[39m shard_id \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m-> 1634\u001b[0m num_examples, num_bytes \u001b[38;5;241m=\u001b[39m \u001b[43mwriter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfinalize\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1635\u001b[0m writer\u001b[38;5;241m.\u001b[39mclose()\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:636\u001b[0m, in \u001b[0;36mArrowWriter.finalize\u001b[0;34m(self, close_stream)\u001b[0m\n\u001b[1;32m    635\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhkey_record \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 636\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_examples_on_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    637\u001b[0m \u001b[38;5;66;03m# If schema is known, infer features even if no examples were written\u001b[39;00m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:495\u001b[0m, in \u001b[0;36mArrowWriter.write_examples_on_file\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    491\u001b[0m         batch_examples[col] \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m    492\u001b[0m             row[\u001b[38;5;241m0\u001b[39m][col]\u001b[38;5;241m.\u001b[39mto_pylist()[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(row[\u001b[38;5;241m0\u001b[39m][col], (pa\u001b[38;5;241m.\u001b[39mArray, pa\u001b[38;5;241m.\u001b[39mChunkedArray)) \u001b[38;5;28;01melse\u001b[39;00m row[\u001b[38;5;241m0\u001b[39m][col]\n\u001b[1;32m    493\u001b[0m             \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_examples\n\u001b[1;32m    494\u001b[0m         ]\n\u001b[0;32m--> 495\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch_examples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch_examples\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    496\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_examples \u001b[38;5;241m=\u001b[39m []\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:609\u001b[0m, in \u001b[0;36mArrowWriter.write_batch\u001b[0;34m(self, batch_examples, writer_batch_size)\u001b[0m\n\u001b[1;32m    608\u001b[0m pa_table \u001b[38;5;241m=\u001b[39m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n\u001b[0;32m--> 609\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter_batch_size\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/arrow_writer.py:627\u001b[0m, in \u001b[0;36mArrowWriter.write_table\u001b[0;34m(self, pa_table, writer_batch_size)\u001b[0m\n\u001b[1;32m    626\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_examples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m pa_table\u001b[38;5;241m.\u001b[39mnum_rows\n\u001b[0;32m--> 627\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpa_writer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter_batch_size\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/pyarrow/ipc.pxi:529\u001b[0m, in \u001b[0;36mpyarrow.lib._CRecordBatchWriter.write_table\u001b[0;34m()\u001b[0m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/pyarrow/error.pxi:89\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/fsspec/implementations/local.py:422\u001b[0m, in \u001b[0;36mLocalFileOpener.write\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    421\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrite\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m--> 422\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[0;31mOSError\u001b[0m: [Errno 122] Disk quota exceeded",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mDatasetGenerationError\u001b[0m                    Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[14], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mdatasets\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mwebdataset\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mshards\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[38;5;28mprint\u001b[39m(dataset)\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/load.py:2151\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m   2148\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\u001b[38;5;241m.\u001b[39mas_streaming_dataset(split\u001b[38;5;241m=\u001b[39msplit)\n\u001b[1;32m   2150\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 2151\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   2152\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2153\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2154\u001b[0m \u001b[43m    \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2155\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2156\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2157\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2159\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m   2160\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m   2161\u001b[0m     keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m   2162\u001b[0m )\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:924\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m    922\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    923\u001b[0m     prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m--> 924\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    925\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    926\u001b[0m \u001b[43m    \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    927\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    928\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    929\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    930\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m    931\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1648\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m   1647\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1648\u001b[0m     \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1649\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1650\u001b[0m \u001b[43m        \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1651\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[1;32m   1652\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1653\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1654\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1000\u001b[0m, in \u001b[0;36mDatasetBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m    996\u001b[0m split_dict\u001b[38;5;241m.\u001b[39madd(split_generator\u001b[38;5;241m.\u001b[39msplit_info)\n\u001b[1;32m    998\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    999\u001b[0m     \u001b[38;5;66;03m# Prepare split will record examples associated to the split\u001b[39;00m\n\u001b[0;32m-> 1000\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_generator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1001\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m   1002\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m   1003\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot find data file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1004\u001b[0m         \u001b[38;5;241m+\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmanual_download_instructions \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m   1005\u001b[0m         \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mOriginal error:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1006\u001b[0m         \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(e)\n\u001b[1;32m   1007\u001b[0m     ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1486\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split\u001b[0;34m(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m   1484\u001b[0m job_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m   1485\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m pbar:\n\u001b[0;32m-> 1486\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split_single\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1487\u001b[0m \u001b[43m        \u001b[49m\u001b[43mgen_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgen_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m_prepare_split_args\u001b[49m\n\u001b[1;32m   1488\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m   1489\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m   1490\u001b[0m \u001b[43m            \u001b[49m\u001b[43mresult\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\n",
      "File \u001b[0;32m/gpfs/home3/kstolle/.local/opt/miniconda3/envs/multidvps-py312/lib/python3.12/site-packages/datasets/builder.py:1643\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m   1641\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, SchemaInferenceError) \u001b[38;5;129;01mand\u001b[39;00m e\u001b[38;5;241m.\u001b[39m__context__ \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m   1642\u001b[0m         e \u001b[38;5;241m=\u001b[39m e\u001b[38;5;241m.\u001b[39m__context__\n\u001b[0;32m-> 1643\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m DatasetGenerationError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAn error occurred while generating the dataset\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m   1645\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m job_id, \u001b[38;5;28;01mTrue\u001b[39;00m, (total_num_examples, total_num_bytes, writer\u001b[38;5;241m.\u001b[39m_features, num_shards, shard_lengths)\n",
      "\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"
     ]
    }
   ],
   "source": [
    "import datasets\n",
    "\n",
    "dataset = datasets.load_dataset(\"webdataset\", data_dir=\"shards\", split=\"train\")\n",
    "print(dataset)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}