Datasets:
Tasks:
Image Classification
Size:
10K - 100K
File size: 4,802 Bytes
030dcb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import os
import datasets
from datasets.tasks import ImageClassification
_HOMEPAGE = "https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5"
_LICENSE = "MIT"
_CITATION = """\
"""
_CATEGORIES = ['meeting_room', 'cloister', 'stairscase', 'restaurant', 'hairsalon', 'children_room', 'dining_room', 'lobby', 'museum', 'laundromat', 'computerroom', 'grocerystore', 'hospitalroom', 'buffet', 'office', 'warehouse', 'garage', 'bookstore', 'florist', 'locker_room', 'inside_bus', 'subway', 'fastfood_restaurant', 'auditorium', 'studiomusic', 'airport_inside', 'pantry', 'restaurant_kitchen', 'casino', 'movietheater', 'kitchen', 'waitingroom', 'artstudio', 'toystore', 'kindergarden', 'trainstation', 'bedroom', 'mall', 'corridor', 'bar', 'classroom', 'shoeshop', 'dentaloffice', 'videostore', 'laboratorywet', 'tv_studio', 'church_inside', 'operating_room', 'jewelleryshop', 'bathroom', 'clothingstore', 'closet', 'winecellar', 'livingroom', 'nursery', 'gameroom', 'inside_subway', 'deli', 'bakery', 'library', 'prisoncell', 'gym', 'concert_hall', 'greenhouse', 'elevator', 'poolinside', 'bowling']
class INDOORSCENECLASSIFICATIONConfig(datasets.BuilderConfig):
"""Builder Config for indoor-scene-classification"""
def __init__(self, data_urls, **kwargs):
"""
BuilderConfig for indoor-scene-classification.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(INDOORSCENECLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
class INDOORSCENECLASSIFICATION(datasets.GeneratorBasedBuilder):
"""indoor-scene-classification image classification dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
INDOORSCENECLASSIFICATIONConfig(
name="full",
description="Full version of indoor-scene-classification dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/train.zip",
"validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid.zip",
"test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/test.zip",
}
,
),
INDOORSCENECLASSIFICATIONConfig(
name="mini",
description="Mini version of indoor-scene-classification dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
"validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
"test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
},
)
]
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_CATEGORIES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=[ImageClassification(image_column="image", label_column="labels")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files["train"]]),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": dl_manager.iter_files([data_files["validation"]]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": dl_manager.iter_files([data_files["test"]]),
},
),
]
def _generate_examples(self, files):
for i, path in enumerate(files):
file_name = os.path.basename(path)
if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
yield i, {
"image_file_path": path,
"image": path,
"labels": os.path.basename(os.path.dirname(path)),
}
|