keremberke commited on
Commit
030dcb9
1 Parent(s): 0acfab5

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT Indoor Scene Recognition > resized416by416_70-20-10Split
2
+ https://universe.roboflow.com/classification/mit-indoor-scene-recognition
3
+
4
+ Provided by Roboflow
5
+ License: MIT
6
+
7
+ ## Indoor Scene Recognition
8
+ ![Examples of Images](http://web.mit.edu/torralba/www/allIndoors.jpg)
9
+ [From the official dataset page](http://web.mit.edu/torralba/www/indoor.html):
10
+ Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g., bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information.
11
+
12
+ ### Database
13
+ The database contains `67 Indoor categories` ... The number of images varies across categories, but there are at least 100 images per category. All images are in jpg format. The images provided here are for research purposes only.
14
+
15
+ ### Paper
16
+ A. Quattoni, and A.Torralba. Recognizing Indoor Scenes. [IEEE Conference on Computer Vision and Pattern Recognition](https://cvpr2023.thecvf.com/) (CVPR), 2009.
17
+
18
+ ### Acknowledgments
19
+ ```
20
+ Thanks to Aude Oliva for helping to create the database of indoor scenes.
21
+ Funding for this research was provided by NSF Career award (IIS 0747120)
22
+ ```
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - image-classification
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+ - Retail
8
+ - Pest Control
9
+ - Benchmark
10
+ ---
11
+
12
+ <div align="center">
13
+ <img width="640" alt="keremberke/indoor-scene-classification" src="https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/thumbnail.jpg">
14
+ </div>
15
+
16
+ ### Dataset Labels
17
+
18
+ ```
19
+ ['meeting_room', 'cloister', 'stairscase', 'restaurant', 'hairsalon', 'children_room', 'dining_room', 'lobby', 'museum', 'laundromat', 'computerroom', 'grocerystore', 'hospitalroom', 'buffet', 'office', 'warehouse', 'garage', 'bookstore', 'florist', 'locker_room', 'inside_bus', 'subway', 'fastfood_restaurant', 'auditorium', 'studiomusic', 'airport_inside', 'pantry', 'restaurant_kitchen', 'casino', 'movietheater', 'kitchen', 'waitingroom', 'artstudio', 'toystore', 'kindergarden', 'trainstation', 'bedroom', 'mall', 'corridor', 'bar', 'classroom', 'shoeshop', 'dentaloffice', 'videostore', 'laboratorywet', 'tv_studio', 'church_inside', 'operating_room', 'jewelleryshop', 'bathroom', 'clothingstore', 'closet', 'winecellar', 'livingroom', 'nursery', 'gameroom', 'inside_subway', 'deli', 'bakery', 'library', 'prisoncell', 'gym', 'concert_hall', 'greenhouse', 'elevator', 'poolinside', 'bowling']
20
+ ```
21
+
22
+
23
+ ### Number of Images
24
+
25
+ ```json
26
+ {'train': 10885, 'test': 1558, 'valid': 3128}
27
+ ```
28
+
29
+
30
+ ### How to Use
31
+
32
+ - Install [datasets](https://pypi.org/project/datasets/):
33
+
34
+ ```bash
35
+ pip install datasets
36
+ ```
37
+
38
+ - Load the dataset:
39
+
40
+ ```python
41
+ from datasets import load_dataset
42
+
43
+ ds = load_dataset("keremberke/indoor-scene-classification", name="full")
44
+ example = ds['train'][0]
45
+ ```
46
+
47
+ ### Roboflow Dataset Page
48
+ [https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5](https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5?ref=roboflow2huggingface)
49
+
50
+ ### Citation
51
+
52
+ ```
53
+
54
+ ```
55
+
56
+ ### License
57
+ MIT
58
+
59
+ ### Dataset Summary
60
+ This dataset was exported via roboflow.com on October 24, 2022 at 4:09 AM GMT
61
+
62
+ Roboflow is an end-to-end computer vision platform that helps you
63
+ * collaborate with your team on computer vision projects
64
+ * collect & organize images
65
+ * understand unstructured image data
66
+ * annotate, and create datasets
67
+ * export, train, and deploy computer vision models
68
+ * use active learning to improve your dataset over time
69
+
70
+ It includes 15571 images.
71
+ Indoor-scenes are annotated in folder format.
72
+
73
+ The following pre-processing was applied to each image:
74
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
75
+ * Resize to 416x416 (Stretch)
76
+
77
+ No image augmentation techniques were applied.
78
+
79
+
80
+
README.roboflow.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ MIT Indoor Scene Recognition - v5 resized416by416_70-20-10Split
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on October 24, 2022 at 4:09 AM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ It includes 15571 images.
16
+ Indoor-scenes are annotated in folder format.
17
+
18
+ The following pre-processing was applied to each image:
19
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
20
+ * Resize to 416x416 (Stretch)
21
+
22
+ No image augmentation techniques were applied.
23
+
24
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22b2043a539cec8cfdc73f229bc4bcacc1d896fd2b55a7d15ca620809791c0b
3
+ size 46531641
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0c78b0bf30d785f17e9acbbeb15a397ef0a18454e689f1ecb4d0df1d2a15dc
3
+ size 328673546
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecc7d5904619a0ad64dca88ac2e18f028d0701b94dbc427a58cc4b6e0af79e30
3
+ size 1232126
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffa061a72fd151f4cfd39dc20b20ca1992bc22462161937757650db9c4707dcc
3
+ size 93670298
indoor-scene-classification.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import datasets
4
+ from datasets.tasks import ImageClassification
5
+
6
+
7
+ _HOMEPAGE = "https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5"
8
+ _LICENSE = "MIT"
9
+ _CITATION = """\
10
+
11
+ """
12
+ _CATEGORIES = ['meeting_room', 'cloister', 'stairscase', 'restaurant', 'hairsalon', 'children_room', 'dining_room', 'lobby', 'museum', 'laundromat', 'computerroom', 'grocerystore', 'hospitalroom', 'buffet', 'office', 'warehouse', 'garage', 'bookstore', 'florist', 'locker_room', 'inside_bus', 'subway', 'fastfood_restaurant', 'auditorium', 'studiomusic', 'airport_inside', 'pantry', 'restaurant_kitchen', 'casino', 'movietheater', 'kitchen', 'waitingroom', 'artstudio', 'toystore', 'kindergarden', 'trainstation', 'bedroom', 'mall', 'corridor', 'bar', 'classroom', 'shoeshop', 'dentaloffice', 'videostore', 'laboratorywet', 'tv_studio', 'church_inside', 'operating_room', 'jewelleryshop', 'bathroom', 'clothingstore', 'closet', 'winecellar', 'livingroom', 'nursery', 'gameroom', 'inside_subway', 'deli', 'bakery', 'library', 'prisoncell', 'gym', 'concert_hall', 'greenhouse', 'elevator', 'poolinside', 'bowling']
13
+
14
+
15
+ class INDOORSCENECLASSIFICATIONConfig(datasets.BuilderConfig):
16
+ """Builder Config for indoor-scene-classification"""
17
+
18
+ def __init__(self, data_urls, **kwargs):
19
+ """
20
+ BuilderConfig for indoor-scene-classification.
21
+
22
+ Args:
23
+ data_urls: `dict`, name to url to download the zip file from.
24
+ **kwargs: keyword arguments forwarded to super.
25
+ """
26
+ super(INDOORSCENECLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
27
+ self.data_urls = data_urls
28
+
29
+
30
+ class INDOORSCENECLASSIFICATION(datasets.GeneratorBasedBuilder):
31
+ """indoor-scene-classification image classification dataset"""
32
+
33
+ VERSION = datasets.Version("1.0.0")
34
+ BUILDER_CONFIGS = [
35
+ INDOORSCENECLASSIFICATIONConfig(
36
+ name="full",
37
+ description="Full version of indoor-scene-classification dataset.",
38
+ data_urls={
39
+ "train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/train.zip",
40
+ "validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid.zip",
41
+ "test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/test.zip",
42
+ }
43
+ ,
44
+ ),
45
+ INDOORSCENECLASSIFICATIONConfig(
46
+ name="mini",
47
+ description="Mini version of indoor-scene-classification dataset.",
48
+ data_urls={
49
+ "train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
50
+ "validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
51
+ "test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip",
52
+ },
53
+ )
54
+ ]
55
+
56
+ def _info(self):
57
+ return datasets.DatasetInfo(
58
+ features=datasets.Features(
59
+ {
60
+ "image_file_path": datasets.Value("string"),
61
+ "image": datasets.Image(),
62
+ "labels": datasets.features.ClassLabel(names=_CATEGORIES),
63
+ }
64
+ ),
65
+ supervised_keys=("image", "labels"),
66
+ homepage=_HOMEPAGE,
67
+ citation=_CITATION,
68
+ license=_LICENSE,
69
+ task_templates=[ImageClassification(image_column="image", label_column="labels")],
70
+ )
71
+
72
+ def _split_generators(self, dl_manager):
73
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
74
+ return [
75
+ datasets.SplitGenerator(
76
+ name=datasets.Split.TRAIN,
77
+ gen_kwargs={
78
+ "files": dl_manager.iter_files([data_files["train"]]),
79
+ },
80
+ ),
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.VALIDATION,
83
+ gen_kwargs={
84
+ "files": dl_manager.iter_files([data_files["validation"]]),
85
+ },
86
+ ),
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.TEST,
89
+ gen_kwargs={
90
+ "files": dl_manager.iter_files([data_files["test"]]),
91
+ },
92
+ ),
93
+ ]
94
+
95
+ def _generate_examples(self, files):
96
+ for i, path in enumerate(files):
97
+ file_name = os.path.basename(path)
98
+ if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
99
+ yield i, {
100
+ "image_file_path": path,
101
+ "image": path,
102
+ "labels": os.path.basename(os.path.dirname(path)),
103
+ }
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"train": 10885, "test": 1558, "valid": 3128}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: c2dcdf3eec0bfbfc6ddd356532275abdf2edff27f93f36098a6c1adf936baa96
  • Pointer size: 131 Bytes
  • Size of remote file: 171 kB