File size: 21,074 Bytes
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Copyright 2023 Andre Barbosa, Igor Caetano Silveira & The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import math
import os
import re

import datasets
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from tqdm.auto import tqdm

np.random.seed(42)  # Set the seed

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TODO
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "sourceA": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceA.tar.gz?download=true",
}


PROMPTS_TO_IGNORE = [
    "brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
    "carta-convite-discutir-discriminacao-na-escola",
    "informacao-no-rotulo-de-produtos-transgenicos",
]
CSV_HEADER = [
    "id",
    "id_prompt",
    "title",
    "essay",
    "grades",
    "general",
    "specific",
    "essay_year",
]


class AesEnemDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("0.0.1")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="sourceA", version=VERSION, description="TODO"),
        datasets.BuilderConfig(
            name="sourceB",
            version=VERSION,
            description="TODO",
        ),
    ]

    DEFAULT_CONFIG_NAME = "sourceA"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if (
            self.config.name == "sourceA"
        ):  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "id_prompt": datasets.Value("string"),
                    "essay_title": datasets.Value("string"),
                    "essay_text": datasets.Value("string"),
                    "grades": datasets.Sequence(datasets.Value("int16")),
                    "essay_year": datasets.Value("int16"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        urls = _URLS[self.config.name]
        extracted_files = dl_manager.download_and_extract({"sourceA": urls})
        html_parser = self._process_html_files(extracted_files)
        self._generate_splits(html_parser.sourceA)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(
                        extracted_files["sourceA"], "sourceA", "train.csv"
                    ),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(
                        extracted_files["sourceA"], "sourceA", "validation.csv"
                    ),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(
                        extracted_files["sourceA"], "sourceA", "test.csv"
                    ),
                    "split": "test",
                },
            ),
        ]

    def _process_html_files(self, paths_dict):
        html_parser = HTMLParser(paths_dict)
        html_parser.parse()
        return html_parser

    def _generate_splits(self, filepath: str, train_size=0.7):
        def map_year(year):
            if year <= 2017:
                return "<=2017"
            return str(year)

        def normalize_grades(grades):
            grades = grades.strip("[]").split(", ")
            grade_mapping = {"0.0": 0, "20": 40}

            # We will remove the rows that match the criteria below
            if any(
                single_grade in grades
                for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
            ):
                return None
            # Use the mapping to transform grades, ignoring the last grade
            mapped_grades = [
                int(grade_mapping.get(grade_concept, grade_concept))
                for grade_concept in grades[:-1]
            ]

            # Calculate and append the sum of the mapped grades as the last element
            mapped_grades.append(sum(mapped_grades))
            return mapped_grades

        df = pd.read_csv(filepath)
        df["general"] = df["general"].fillna("")
        df["essay_year"] = df["essay_year"].astype("int")
        df["mapped_year"] = df["essay_year"].apply(map_year)
        df["grades"] = df["grades"].apply(normalize_grades)
        df = df.dropna()
        buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()        
        df.drop('mapped_year', axis=1, inplace=True)
        train_set = []
        val_set = []
        test_set = []
        for year, prompts in buckets.items():
            np.random.shuffle(prompts)
            num_prompts = len(prompts)

            # All prompts go to the test if less than 3
            if num_prompts <= 3:
                train_set.append(df[df["id_prompt"].isin([prompts[0]])])
                val_set.append(df[df["id_prompt"].isin([prompts[1]])])
                test_set.append(df[df["id_prompt"].isin([prompts[2]])])
                continue

            # Determine the number of prompts for each set based on train_size and remaining prompts
            num_train = math.floor(num_prompts * train_size)
            num_val_test = num_prompts - num_train
            num_val = num_val_test // 2
            num_test = num_val_test - num_val

            # Assign prompts to each set
            train_set.append(df[df["id_prompt"].isin(prompts[:num_train])])
            val_set.append(
                df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])]
            )
            test_set.append(
                df[
                    df["id_prompt"].isin(
                        prompts[
                            (num_train + num_val) : (num_train + num_val + num_test)
                        ]
                    )
                ]
            )

        # Convert lists of groups to DataFrames
        train_df = pd.concat(train_set)
        val_df = pd.concat(val_set)
        test_df = pd.concat(test_set)

        # Data Validation Assertions
        assert (
            len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
        ), "Overlap between train and val id_prompt"
        assert (
            len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
        ), "Overlap between train and test id_prompt"
        assert (
            len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
        ), "Overlap between val and test id_prompt"
        dirname = os.path.dirname(filepath)
        train_df.to_csv(f"{dirname}/train.csv", index=False)
        val_df.to_csv(f"{dirname}/validation.csv", index=False)
        test_df.to_csv(f"{dirname}/test.csv", index=False)

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        if self.config.name == "sourceA":
            with open(filepath, encoding="utf-8") as csvfile:
                next(csvfile)
                csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
                for i, row in enumerate(csv_reader):
                    grades = row["grades"].strip("[]").split(", ")
                    yield i, {
                        "id": row["id"],
                        "id_prompt": row["id_prompt"],
                        "essay_title": row["title"],
                        "essay_text": row["essay"],
                        "grades": grades,
                        "essay_year": row["essay_year"],
                    }


class HTMLParser:
    def __init__(self, paths_dict):
        self.paths_dict = paths_dict
        self.sourceA = None
        self.sourceB = None

    def apply_soup(self, filepath, num):
        # recebe uma URL, salva o HTML dessa página e retorna o soup dela
        file = open(os.path.join(filepath, num), "r", encoding="utf8")
        conteudo = file.read()
        soup = BeautifulSoup(conteudo, "html.parser")
        return soup

    @staticmethod
    def _get_title(soup):
        title = soup.find("div", class_="container-composition")
        if title is None:
            title = soup.find("h1", class_="pg-color10").get_text()
        else:
            title = title.h2.get_text()
        title = title.replace("\xa0", "")
        return title

    @staticmethod
    def _get_grades(soup):
        grades = soup.find("section", class_="results-table")
        final_grades = []
        if grades is not None:
            grades = grades.find_all("span", class_="points")
            assert len(grades) == 6, f"Missing grades: {len(grades)}"
            for single_grade in grades:
                grade = int(single_grade.get_text())
                final_grades.append(grade)
            assert final_grades[-1] == sum(
                final_grades[:-1]
            ), "Grading sum is not making sense"
        else:
            grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
            grades_sum = float(
                soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
            )
            grades = grades.find_all("td")[:10]
            for idx in range(1, 10, 2):
                grade = float(grades[idx].get_text().replace(",", "."))
                final_grades.append(grade)
            assert grades_sum == sum(final_grades), "Grading sum is not making sense"
            final_grades.append(grades_sum)
        return final_grades

    @staticmethod
    def _get_general_comment(soup):
        def get_general_comment_aux(soup):
            result = soup.find("article", class_="list-item c")
            if result is not None:
                result = result.find("div", class_="description")
                return result.get_text()
            else:
                result = soup.find("p", style="margin: 0px 0px 11px;")
                if result is not None:
                    return result.get_text()
                else:
                    result = soup.find("p", style="margin: 0px;")
                    if result is not None:
                        return result.get_text()
                    else:
                        result = soup.find(
                            "p", style="margin: 0px; text-align: justify;"
                        )
                        if result is not None:
                            return result.get_text()
                        else:
                            return ""

        text = soup.find("div", class_="text")
        if text is not None:
            text = text.find("p")
            if (text is None) or (len(text.get_text()) < 2):
                return get_general_comment_aux(soup)
            return text.get_text()
        else:
            return get_general_comment_aux(soup)

    @staticmethod
    def _get_specific_comment(soup):
        result = soup.find("div", class_="text")
        if result is not None:
            result = result.find_all("li")
            cms = []
            if result != []:
                for item in result:
                    text = item.get_text()
                    if text != "\xa0":
                        cms.append(text)
                return cms
            else:
                result = soup.find("div", class_="text").find_all("p")
                for item in result:
                    text = item.get_text()
                    if text != "\xa0":
                        cms.append(text)
                return cms
        else:
            result = soup.find_all("article", class_="list-item c")
            if len(result) < 2:
                return ["First if"]
            result = result[1].find_all("p")
            cms = []
            for item in result:
                text = item.get_text()
                if text != "\xa0":
                    cms.append(text)
            return cms

    @staticmethod
    def _get_essay(soup):
        essay = soup.find("div", class_="text-composition")
        if essay is not None:
            essay = essay.find_all("p")
            for f in essay:
                while f.find("span", style="color:#00b050") is not None:
                    f.find("span", style="color:#00b050").decompose()
                while f.find("span", class_="certo") is not None:
                    f.find("span", class_="certo").decompose()
            result = []
            for paragraph in essay:
                result.append(paragraph.get_text())
            return result
        else:
            essay = soup.find("div", {"id": "texto"})
            essay.find("section", class_="list-items").decompose()
            essay = essay.find_all("p")
            for f in essay:
                while f.find("span", class_="certo") is not None:
                    f.find("span", class_="certo").decompose()
            result = []
            for paragraph in essay:
                result.append(paragraph.get_text())
            return result

    @staticmethod
    def _get_essay_year(soup):
        pattern = r"redações corrigidas - \w+/\d+"
        first_occurrence = re.search(pattern, soup.get_text().lower())
        matched_url = first_occurrence.group(0) if first_occurrence else None
        year_pattern = r"\d{4}"
        return re.search(year_pattern, matched_url).group(0)

    def _clean_title(self, title):
        smaller_index = title.find("[")
        if smaller_index == -1:
            return title
        else:
            bigger_index = title.find("]")
            new_title = title[:smaller_index] + title[bigger_index + 1 :]
            return self._clean_title(new_title.replace("  ", " "))

    def _clean_list(self, list):
        if list == []:
            return []
        else:
            new_list = []
            for phrase in list:
                phrase = (
                    phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".")
                )
                while phrase.find("  ") != -1:
                    phrase = phrase.replace("  ", " ")
                if len(phrase) > 1:
                    new_list.append(phrase)
            return new_list

    def parse(self):
        for key, filepath in self.paths_dict.items():
            full_path = os.path.join(filepath, key)
            if key == "sourceA":
                self.sourceA = f"{full_path}/sourceA.csv"
            with open(
                f"{full_path}/{key}.csv", "w", newline="", encoding="utf8"
            ) as final_file:
                writer = csv.writer(final_file)
                writer.writerow(CSV_HEADER)
                sub_folders = [
                    name for name in os.listdir(full_path) if not name.endswith(".csv")
                ]
                essay_id = 0
                essay_title = None
                essay_text = None
                essay_grades = None
                general_comment = None
                specific_comment = None
                essay_year = None
                for prompt_folder in tqdm(
                    sub_folders,
                    desc=f"Parsing HTML files from: {key}",
                    total=len(sub_folders),
                ):
                    if prompt_folder in PROMPTS_TO_IGNORE:
                        continue
                    prompt = os.path.join(full_path, prompt_folder)
                    prompt_essays = [name for name in os.listdir(prompt)]
                    prompt_essays = prompt_essays[:-1]
                    essay_year = HTMLParser._get_essay_year(
                        self.apply_soup(prompt, "Prompt.html")
                    )
                    for essay in prompt_essays:
                        soup_text = self.apply_soup(prompt, essay)
                        if essay == "Prompt.html":
                            continue
                        essay_title = self._clean_title(
                            HTMLParser._get_title(soup_text).replace(";", ",")
                        )
                        essay_grades = HTMLParser._get_grades(soup_text)
                        general_comment = HTMLParser._get_general_comment(
                            soup_text
                        ).strip()
                        specific_comment = HTMLParser._get_specific_comment(soup_text)
                        if general_comment in specific_comment:
                            specific_comment.remove(general_comment)
                            if (len(specific_comment) > 1) and (
                                len(specific_comment[0]) < 2
                            ):
                                specific_comment = specific_comment[1:]
                        essay_text = self._clean_list(HTMLParser._get_essay(soup_text))
                        specific_comment = self._clean_list(specific_comment)
                        writer.writerow(
                            [
                                essay,
                                prompt_folder,
                                essay_title,
                                essay_text,
                                essay_grades,
                                general_comment,
                                specific_comment,
                                essay_year,
                            ]
                        )
                        essay_id += 1