You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Spectro-polarimetric Dataset

We provide a spectro-polarimetric dataset. This dataset consists of full-Stokes images for both hyperspectral and trichromatic scenes. Hyperspectral dataset has 311 scenes and trichromatic dataset has 2022 scenes.

For more details, see our paper on Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset.

πŸ“¦ Contents

πŸ’Ύ File Hierarchy

  • πŸ“‚ trichromatic/: Trichromatic polarimetric dataset

    • πŸ“‚ original/: Data processed from captured raw files
      • πŸ“„ 0000.npy ~
    • πŸ“‚ denoised/: Data processed from denoised raw files
      • πŸ“„ 0000.npy ~
    • πŸ“‚ mask/: Masks for the scenes
      • πŸ“„ 0000.png ~
    • πŸ“„ labeling_trichromatic.csv: Labeling each scene
  • πŸ“‚ hyperspectral/: Hyperspectral polarimetric dataset

    • πŸ“‚ original/: Data processed from captured raw files
      • πŸ“„ 0000.npy ~
    • πŸ“‚ denoised/: Data processed from denoised raw files
      • πŸ“„ 0000.npy ~
    • πŸ“‚ mask/: Mask fors the scenes
      • πŸ“„ 0000.png ~
    • πŸ“„ labeling_hyperspectral.csv: Labeling each scene
  • πŸ“„ README.md

πŸ“· Trichromatic Data Overview

  • original & denoised:

    • Format: Stokes numpy files (1900, 2100, 4, 3)
    • Dimensions:
      • R: Spatial dimension
      • C: Spatial dimension
      • s: Stokes axis (s0, s1, s2, s3)
      • c: Spectral axis (R G B)
  • mask:

    • Binary mask images (1900, 2100)
    • Dimensions:
      • R: Spatial dimension
      • C: Spatial dimension

πŸ“· Hyperspectral Data Overview

  • original & denoised:

    • Format: Stokes numpy files (512, 612, 4, 21)
    • Dimensions:
      • R: Spatial dimension
      • C: Spatial dimension
      • s: Stokes axis (s0, s1, s2, s3)
      • c: Spectral axis (450nm ~ 650nm at 10nm intervals)
  • mask:

    • Binary mask images (512, 612)
    • Dimensions:
      • R: Spatial dimension
      • C: Spatial dimension

πŸ—‚οΈ Labeling Information

  • SceneNum: Indices of scenes (0 ~ 310 for hyperspectral, 0 ~ 2021 for trichromatic)
  • Content: Type of content (scene, object)
  • Timezone: Scene environment (indoor, day, night)
  • Illumination: Illumination condition (white, yellow, sunny, cloudy)

πŸ“œ Citation

@InProceedings{Jeon_2024_CVPR,
    author    = {Jeon, Yujin and Choi, Eunsue and Kim, Youngchan and Moon, Yunseong and Omer, Khalid and Heide, Felix and Baek, Seung-Hwan},
    title     = {Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {22098-22108}
}

πŸ“« Contact

If you have any questions, please contact

Downloads last month
631