File size: 9,068 Bytes
9875014 65f8b35 7fd5eb6 9875014 65f8b35 9875014 49cf593 9875014 49cf593 9875014 65f8b35 49cf593 65f8b35 1f06b77 65f8b35 49cf593 736cceb 65f8b35 49cf593 9875014 49cf593 9875014 65f8b35 9875014 dd969e9 7fd5eb6 dd969e9 7fd5eb6 dd969e9 9875014 65f8b35 dd969e9 7fd5eb6 9875014 7fd5eb6 9875014 dd969e9 9875014 10355f2 9875014 7fd5eb6 9875014 65f8b35 49cf593 0ae7826 49cf593 7fd5eb6 49cf593 65f8b35 49cf593 9875014 7fd5eb6 9875014 49cf593 9875014 49cf593 65f8b35 dd969e9 49cf593 dd969e9 9875014 bfa5bcd 65f8b35 49cf593 9875014 49cf593 52ed403 65f8b35 dd969e9 10355f2 dd969e9 7fd5eb6 dd969e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DUDE dataset loader"""
import copy
import json
import os
from typing import List, Literal
import datasets
import pdf2image
from tqdm import tqdm
_CITATION = """
@inproceedings{dude2023icdar,
title={ICDAR 2023 Challenge on Document UnderstanDing of Everything (DUDE)},
author={Van Landeghem, Jordy et . al.},
booktitle={Proceedings of the ICDAR},
year={2023}
}
"""
_DESCRIPTION = """\
DUDE requires models to reason and understand about document layouts in multi-page images/PDFs to answer questions about them.
Specifically, models need to incorporate a new modality of layout present in the images/PDFs and reason
over it to answer DUDE questions.
""" # DUDE Contains X questions and Y and ...
_HOMEPAGE = "https://rrc.cvc.uab.es/?ch=23"
_LICENSE = "CC BY 4.0"
_SPLITS = ["train", "val", "test"]
_URLS = {
"binaries": "https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_train-val-test_binaries.tar.gz",
"annotations": "https://zenodo.org/record/7763635/files/2023-03-23_DUDE_gt_test_PUBLIC.json?download=1"
# "blind": "/home/jordy/code/DUchallenge/DUDEeval/gt/2023-03-07_DUDE_gt_release-candidate_NOTSHARABLE.json",
}
SKIP_DOC_IDS = [
"nan",
"ef03364aa27a0987c9870472e312aceb",
"5c5a5880e6a73b4be2315d506ab0b15b",
]
def parse_bbox(bbox):
if bbox in [[], [[]]]:
return None
answers_page_bounding_boxes = []
if isinstance(bbox[0], list):
bbox = bbox[0]
keys = ["left", "top", "width", "height", "page"]
for page_bb in bbox:
if len(page_bb) == 0:
continue
page_bb = {key: page_bb[key] for key in keys}
answers_page_bounding_boxes.append(page_bb)
return answers_page_bounding_boxes
def batched_conversion(pdf_file):
info = pdf2image.pdfinfo_from_path(pdf_file, userpw=None, poppler_path=None)
maxPages = info["Pages"]
images = []
for page in range(1, maxPages + 1, 10):
images.extend(
pdf2image.convert_from_path(
pdf_file,
dpi=200,
first_page=page,
last_page=min(page + 10 - 1, maxPages),
)
)
return images
def open_pdf_binary(pdf_file):
with open(pdf_file, "rb") as f:
return f.read()
class DUDEConfig(datasets.BuilderConfig):
"""BuilderConfig for DUDE."""
def __init__(
self,
binary_mode: bool = False,
ocr_engine: Literal["Azure", "Amazon", "Tesseract"] = "Amazon",
format: Literal["original", "due"] = "original",
**kwargs,
):
"""BuilderConfig for DUDE.
Args:
binary_mode: `boolean`, load binary PDFs/OCR or pass along paths on local file system
**kwargs: keyword arguments forwarded to super.
"""
super(DUDEConfig, self).__init__(description=_DESCRIPTION, **kwargs)
self.binary_mode = binary_mode
self.ocr_engine = ocr_engine
self.format = format
def builder_configs(version):
configurations = []
for binary_mode in [True, False]:
for ocr_engine in ["Azure", "Amazon", "Tesseract"]:
for format in ["original", "due"]:
binary_name = "bin_" if binary_mode else ""
configurations.append(
DUDEConfig(
name=f"{binary_name}{ocr_engine}_{format}",
version=version,
binary_mode=binary_mode,
ocr_engine=ocr_engine,
format=format,
)
)
return configurations
class DUDE(datasets.GeneratorBasedBuilder):
"""DUDE dataset."""
VERSION = datasets.Version("1.0.7")
BUILDER_CONFIGS = builder_configs(VERSION)
DEFAULT_CONFIG_NAME = (
"Amazon_original" # for some reason not working, need to pass a config anyway
)
def _info(self):
features = datasets.Features(
{
"docId": datasets.Value("string"),
"questionId": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.Sequence(datasets.Value("string")),
"answers_page_bounding_boxes": datasets.Sequence(
{
"left": datasets.Value("int32"),
"top": datasets.Value("int32"),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"page": datasets.Value("int32"),
}
),
"answers_variants": datasets.Sequence(datasets.Value("string")),
"answer_type": datasets.Value("string"),
"data_split": datasets.Value("string"),
"document": datasets.Value("binary")
if self.config.binary_mode
else datasets.Value("string"),
"OCR": datasets.Value("binary")
if self.config.binary_mode
else datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
if "blind" in _URLS and os.path.exists(_URLS[f"blind"]):
annotations = json.load(open(_URLS[f"blind"], "r"))
else:
annotations = json.load(open(_URLS[f"annotations"], "r"))
if self.config.data_dir: # when unpacked to a custom directory
binary_extraction_path = self.config.data_dir
else:
binaries_path = dl_manager.download(_URLS["binaries"])
binary_extraction_path = dl_manager.extract(binaries_path)
# binaries_archive = dl_manager.iter_archive(binaries_path)
splits = []
for split in _SPLITS:
splits.append(
datasets.SplitGenerator(
name=split,
gen_kwargs={
"binary_extraction_path": binary_extraction_path,
"annotations": annotations,
"split": split,
},
)
)
return splits
def _generate_examples(self, binary_extraction_path, annotations, split):
def retrieve_doc(docid):
extracted_path = os.path.join(
binary_extraction_path, "PDF", split, docid + ".pdf"
)
return extracted_path
def retrieve_OCR(docid, ocr_engine="Amazon", format="original"):
extracted_path = os.path.join(
binary_extraction_path, "OCR", ocr_engine, docid + f"_{format}.json"
)
return extracted_path
annotations = annotations['data'] if isinstance(annotations, dict) else annotations
split_condition = (
lambda x, split: bool(x["data_split"] == split)
if split in ["train", "val"]
else bool(split in x["data_split"])
) # test, test2; only relevant for blind set
annotations = [x for x in annotations if split_condition(x, split)]
for i, a in enumerate(annotations):
if a["docId"] in SKIP_DOC_IDS:
continue
a = dict(a)
a["data_split"] = split
if not "answers" in a.keys(): # test set has no ground truth provided
a["answers"] = None
a["answers_variants"] = None
a["answer_type"] = None
a["answers_page_bounding_boxes"] = None
else:
a["answers_page_bounding_boxes"] = parse_bbox(
a.get("answers_page_bounding_boxes", [])
)
docpath = retrieve_doc(a["docId"])
ocrpath = retrieve_OCR(a["docId"])
if self.config.binary_mode:
with open(docpath, "rb") as f, open(ocrpath, "rb") as g:
a["document"] = f.read()
a["OCR"] = g.read()
else:
a["document"] = docpath
a["OCR"] = ocrpath
yield i, a
|