Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
problem
stringlengths 16
1.8k
| answer
stringlengths 1
188
|
---|---|
$P(x)$ is a polynomial of degree $3n$ such that
\begin{eqnarray*} P(0) = P(3) = \cdots &=& P(3n) = 2, \\ P(1) = P(4) = \cdots &=& P(3n-2) = 1, \\ P(2) = P(5) = \cdots &=& P(3n-1) = 0, \quad\text{ and }\\ && P(3n+1) = 730.\end{eqnarray*}
Determine $n$. | n = 4 |
Diameter $AB$ of a circle has length a $2$-digit integer (base ten). Reversing the digits gives the length of the perpendicular chord $CD$. The distance from their intersection point $H$ to the center $O$ is a positive rational number. Determine the length of $AB$. | 65 |
Consider all 1000-element subsets of the set $\{1, 2, 3, ... , 2015\}$. From each such subset choose the least element. The arithmetic mean of all of these least elements is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$. | 431 |
In right triangle $ABC$ with right angle $C$, $CA = 30$ and $CB = 16$. Its legs $CA$ and $CB$ are extended beyond $A$ and $B$. Points $O_1$ and $O_2$ lie in the exterior of the triangle and are the centers of two circles with equal radii. The circle with center $O_1$ is tangent to the hypotenuse and to the extension of leg $CA$, the circle with center $O_2$ is tangent to the hypotenuse and to the extension of leg $CB$, and the circles are externally tangent to each other. The length of the radius either circle can be expressed as $p/q$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. | 737 |
Let $m$ be the least positive integer divisible by $17$ whose digits sum to $17$. Find $m$. | 476 |
Find the sum of all positive integers $a=2^n3^m$ where $n$ and $m$ are non-negative integers, for which $a^6$ is not a divisor of $6^a$. | 42 |
A cylindrical tank with radius $4$ feet and height $9$ feet is lying on its side. The tank is filled with water to a depth of $2$ feet. What is the volume of water, in cubic feet?
$\mathrm{(A)}\ 24\pi - 36 \sqrt {2} \qquad \mathrm{(B)}\ 24\pi - 24 \sqrt {3} \qquad \mathrm{(C)}\ 36\pi - 36 \sqrt {3} \qquad \mathrm{(D)}\ 36\pi - 24 \sqrt {2} \qquad \mathrm{(E)}\ 48\pi - 36 \sqrt {3}$ | 48\pi - 36\sqrt{3} |
The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$, and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$, where $a > 0$. Find the base-$10$ representation of $n$. | 925 |
Find the number of $7$-tuples of positive integers $(a,b,c,d,e,f,g)$ that satisfy the following systems of equations:
\begin{align*} abc&=70,\\ cde&=71,\\ efg&=72. \end{align*} | 96 |
Find the number of ordered triples $(a,b,c)$ where $a$, $b$, and $c$ are positive integers, $a$ is a factor of $b$, $a$ is a factor of $c$, and $a+b+c=100$. | 200 |
Let $f(n)$ be the number of ways to write $n$ as a sum of powers of $2$, where we keep track of the order of the summation. For example, $f(4)=6$ because $4$ can be written as $4$, $2+2$, $2+1+1$, $1+2+1$, $1+1+2$, and $1+1+1+1$. Find the smallest $n$ greater than $2013$ for which $f(n)$ is odd. | 2047 |
Let $x$, $y$ and $z$ all exceed $1$ and let $w$ be a positive number such that $\log_x w = 24$, $\log_y w = 40$ and $\log_{xyz} w = 12$. Find $\log_z w$. | 60 |
Suppose that the measurement of time during the day is converted to the metric system so that each day has $10$ metric hours, and each metric hour has $100$ metric minutes. Digital clocks would then be produced that would read $\text{9:99}$ just before midnight, $\text{0:00}$ at midnight, $\text{1:25}$ at the former $\text{3:00}$ AM, and $\text{7:50}$ at the former $\text{6:00}$ PM. After the conversion, a person who wanted to wake up at the equivalent of the former $\text{6:36}$ AM would set his new digital alarm clock for $\text{A:BC}$, where $\text{A}$, $\text{B}$, and $\text{C}$ are digits. Find $100\text{A}+10\text{B}+\text{C}$. | 275 |
Suppose $n$ is a positive integer and $d$ is a single digit in base 10. Find $n$ if
$\frac{n}{810}=0.d25d25d25\ldots$ | 750 |
Two unit squares are selected at random without replacement from an $n \times n$ grid of unit squares. Find the least positive integer $n$ such that the probability that the two selected unit squares are horizontally or vertically adjacent is less than $\frac{1}{2015}$. | 90 |
Set $A$ consists of $m$ consecutive integers whose sum is $2m$, and set $B$ consists of $2m$ consecutive integers whose sum is $m.$ The absolute value of the difference between the greatest element of $A$ and the greatest element of $B$ is $99$. Find $m.$ | 201 |
The value of $x$ that satisfies $\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. | 103 |
For $t = 1, 2, 3, 4$, define $S_t = \sum_{i = 1}^{350}a_i^t$, where $a_i \in \{1,2,3,4\}$. If $S_1 = 513$ and $S_4 = 4745$, find the minimum possible value for $S_2$. | 905 |
A hexagon that is inscribed in a circle has side lengths $22$, $22$, $20$, $22$, $22$, and $20$ in that order. The radius of the circle can be written as $p+\sqrt{q}$, where $p$ and $q$ are positive integers. Find $p+q$. | 272 |
Let the set $\mathcal{S} = \{8, 5, 1, 13, 34, 3, 21, 2\}.$ Susan makes a list as follows: for each two-element subset of $\mathcal{S},$ she writes on her list the greater of the set's two elements. Find the sum of the numbers on the list. | 484 |
What is the smallest integer $n$, greater than one, for which the root-mean-square of the first $n$ positive integers is an integer?
$\mathbf{Note.}$ The root-mean-square of $n$ numbers $a_1, a_2, \cdots, a_n$ is defined to be
\[\left[\frac{a_1^2 + a_2^2 + \cdots + a_n^2}n\right]^{1/2}\] | 337 |
A group of children held a grape-eating contest. When the contest was over, the winner had eaten $n$ grapes, and the child in $k$-th place had eaten $n+2-2k$ grapes. The total number of grapes eaten in the contest was $2009$. Find the smallest possible value of $n$. | 89 |
Find, with proof, all positive integers $n$ for which $2^n + 12^n + 2011^n$ is a perfect square. | n = 1 |
The system of equations
\begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\ \log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\ \end{eqnarray*}
has two solutions \((x_{1},y_{1},z_{1})\) and \((x_{2},y_{2},z_{2})\). Find \(y_{1} + y_{2}\). | 25 |
What is the smallest positive integer that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers? | 495 |
Rudolph bikes at a constant rate and stops for a five-minute break at the end of every mile. Jennifer bikes at a constant rate which is three-quarters the rate that Rudolph bikes, but Jennifer takes a five-minute break at the end of every two miles. Jennifer and Rudolph begin biking at the same time and arrive at the 50-mile mark at exactly the same time. How many minutes has it taken them? | 620 \text{ minutes} |
A pyramid has a triangular base with side lengths $20$, $20$, and $24$. The three edges of the pyramid from the three corners of the base to the fourth vertex of the pyramid all have length $25$. The volume of the pyramid is $m\sqrt{n}$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$. | 803 |
Let $(a,b,c)$ be the real solution of the system of equations $x^3 - xyz = 2$, $y^3 - xyz = 6$, $z^3 - xyz = 20$. The greatest possible value of $a^3 + b^3 + c^3$ can be written in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. | 158 |
Let \( f(x) = (x^2 + 3x + 2)^{\cos(\pi x)} \). Find the sum of all positive integers \( n \) for which
\[
\left |\sum_{k=1}^n \log_{10} f(k) \right| = 1.
\] | 21 |
Find the number of positive integers less than $1000$ that can be expressed as the difference of two integral powers of $2.$ | 50 |
For any positive integer $k$, let $f_1(k)$ denote the square of the sum of the digits of $k$. For $n \ge 2$, let $f_n(k) = f_1(f_{n - 1}(k))$. Find $f_{1988}(11)$. | 169 |
Call a permutation $a_1, a_2, \ldots, a_n$ of the integers $1, 2, \ldots, n$ quasi-increasing if $a_k \leq a_{k+1} + 2$ for each $1 \leq k \leq n-1$. For example, 53421 and 14253 are quasi-increasing permutations of the integers $1, 2, 3, 4, 5$, but 45123 is not. Find the number of quasi-increasing permutations of the integers $1, 2, \ldots, 7$. | 486 |
There exist unique positive integers $x$ and $y$ that satisfy the equation $x^2 + 84x + 2008 = y^2$. Find $x + y$. | 80 |
Rectangle $ABCD$ is given with $AB=63$ and $BC=448.$ Points $E$ and $F$ lie on $AD$ and $BC$ respectively, such that $AE=CF=84.$ The inscribed circle of triangle $BEF$ is tangent to $EF$ at point $P,$ and the inscribed circle of triangle $DEF$ is tangent to $EF$ at point $Q.$ Find $PQ.$ | 259 |
In a new school $40$ percent of the students are freshmen, $30$ percent are sophomores, $20$ percent are juniors, and $10$ percent are seniors. All freshmen are required to take Latin, and $80$ percent of the sophomores, $50$ percent of the juniors, and $20$ percent of the seniors elect to take Latin. The probability that a randomly chosen Latin student is a sophomore is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. | 25 |
Consider functions $f : [0, 1] \rightarrow \mathbb{R}$ which satisfy
(i) $f(x) \ge 0$ for all $x$ in $[0, 1]$,
(ii) $f(1) = 1$,
(iii) $f(x) + f(y) \le f(x + y)$ whenever $x$, $y$, and $x + y$ are all in $[0, 1]$.
Find, with proof, the smallest constant $c$ such that
$f(x) \le cx$
for every function $f$ satisfying (i)-(iii) and every $x$ in $[0, 1]$. | 2 |
Find the sum of all positive integers $b < 1000$ such that the base-$b$ integer $36_{b}$ is a perfect square and the base-$b$ integer $27_{b}$ is a perfect cube. | 371 |
Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that \[xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))\] for all $x, y \in \mathbb{Z}$ with $x \neq 0$. | f(x) = x^2 |
A permutation of the set of positive integers $[n] = \{1, 2, \ldots, n\}$ is a sequence $(a_1, a_2, \ldots, a_n)$ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3, 5, 1, 2, 4)$ is a permutation of $[5]$. Let $P(n)$ be the number of permutations of $[n]$ for which $ka_k$ is a perfect square for all $1\leq k\leq n$. Find with proof the smallest $n$ such that $P(n)$ is a multiple of $2010$. | 4489 |
Positive integers $a$ and $b$ satisfy the condition
\[\log_2(\log_{2^a}(\log_{2^b}(2^{1000}))) = 0.\]
Find the sum of all possible values of $a+b$. | 881 |
Let $C$ be the graph of $xy = 1$, and denote by $C^*$ the reflection of $C$ in the line $y = 2x$. Let the equation of $C^*$ be written in the form
\[12x^2 + bxy + cy^2 + d = 0.\]
Find the product $bc$. | 084 |
For any positive integer $a, \sigma(a)$ denotes the sum of the positive integer divisors of $a$. Let $n$ be the least positive integer such that $\sigma(a^n)-1$ is divisible by $2021$ for all positive integers $a$. Find the sum of the prime factors in the prime factorization of $n$. | 125 |
Let the set $S = \{P_1, P_2, \dots, P_{12}\}$ consist of the twelve vertices of a regular $12$-gon. A subset $Q$ of $S$ is called "communal" if there is a circle such that all points of $Q$ are inside the circle, and all points of $S$ not in $Q$ are outside of the circle. How many communal subsets are there? (Note that the empty set is a communal subset.) | 134 |
Fifteen distinct points are designated on $\triangle ABC$: the 3 vertices $A$, $B$, and $C$; $3$ other points on side $\overline{AB}$; $4$ other points on side $\overline{BC}$; and $5$ other points on side $\overline{CA}$. Find the number of triangles with positive area whose vertices are among these $15$ points. | 390 |
Let $N$ be the number of ordered triples $(A,B,C)$ of integers satisfying the conditions
(a) $0\le A<B<C\le99$,
(b) there exist integers $a$, $b$, and $c$, and prime $p$ where $0\le b<a<c<p$,
(c) $p$ divides $A-a$, $B-b$, and $C-c$, and
(d) each ordered triple $(A,B,C)$ and each ordered triple $(b,a,c)$ form arithmetic sequences. Find $N$. | 272 |
Let $X_1, X_2, \ldots, X_{100}$ be a sequence of mutually distinct nonempty subsets of a set $S$. Any two sets $X_i$ and $X_{i+1}$ are disjoint and their union is not the whole set $S$, that is, $X_i\cap X_{i+1}=\emptyset$ and $X_i\cup X_{i+1}\neq S$, for all $i\in\{1, \ldots, 99\}$. Find the smallest possible number of elements in $S$. | 8 |
In a Martian civilization, all logarithms whose bases are not specified are assumed to be base $b$, for some fixed $b\ge2$. A Martian student writes down
\[3\log(\sqrt{x}\log x)=56\]
\[\log_{\log x}(x)=54\]
and finds that this system of equations has a single real number solution $x>1$. Find $b$. | 216 |
Find the number of positive integers $m$ for which there exist nonnegative integers $x_0$, $x_1$ , $\dots$ , $x_{2011}$ such that
\[m^{x_0} = \sum_{k = 1}^{2011} m^{x_k}.\] | 16 |
Initially Alex, Betty, and Charlie had a total of $444$ peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats $5$ of his peanuts, Betty eats $9$ of her peanuts, and Charlie eats $25$ of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially. | 108 |
Define a sequence recursively by $t_1 = 20$, $t_2 = 21$, and\[t_n = \frac{5t_{n-1}+1}{25t_{n-2}}\]for all $n \ge 3$. Then $t_{2020}$ can be expressed as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. | 626 |
Find the number of integers $c$ such that the equation \[\left||20|x|-x^2|-c\right|=21\]has $12$ distinct real solutions. | 57 |
Anh read a book. On the first day she read $n$ pages in $t$ minutes, where $n$ and $t$ are positive integers. On the second day Anh read $n + 1$ pages in $t + 1$ minutes. Each day thereafter Anh read one more page than she read on the previous day, and it took her one more minute than on the previous day until she completely read the $374$ page book. It took her a total of $319$ minutes to read the book. Find $n + t$. | 53 |
Suppose that $y = \frac34x$ and $x^y = y^x$. The quantity $x + y$ can be expressed as a rational number $\frac {r}{s}$, where $r$ and $s$ are relatively prime positive integers. Find $r + s$. | 529 |
Positive numbers $x$, $y$, and $z$ satisfy $xyz = 10^{81}$ and $(\log_{10}x)(\log_{10} yz) + (\log_{10}y) (\log_{10}z) = 468$. Find $\sqrt {(\log_{10}x)^2 + (\log_{10}y)^2 + (\log_{10}z)^2}$. | 75 |
Equilateral triangle $ABC$ has side length $840$. Point $D$ lies on the same side of line $BC$ as $A$ such that $\overline{BD} \perp \overline{BC}$. The line $\ell$ through $D$ parallel to line $BC$ intersects sides $\overline{AB}$ and $\overline{AC}$ at points $E$ and $F$, respectively. Point $G$ lies on $\ell$ such that $F$ is between $E$ and $G$, $\triangle AFG$ is isosceles, and the ratio of the area of $\triangle AFG$ to the area of $\triangle BED$ is $8:9$. Find $AF$. | 336 |
Two positive integers differ by $60$. The sum of their square roots is the square root of an integer that is not a perfect square. What is the maximum possible sum of the two integers? | 156 |
If $a<b<c<d<e$ are consecutive positive integers such that $b+c+d$ is a perfect square and $a+b+c+d+e$ is a perfect cube, what is the smallest possible value of $c$? | 675 |
The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a quarter hours. How many minutes does he spend bicycling? | 150 |
Find the sum of all positive rational numbers that are less than 10 and that have denominator 30 when written in lowest terms. | 400 |
Let $K$ be the product of all factors $(b-a)$ (not necessarily distinct) where $a$ and $b$ are integers satisfying $1\le a < b \le 20$. Find the greatest positive integer $n$ such that $2^n$ divides $K$. | 150 |
For positive real numbers $s$, let $\tau(s)$ denote the set of all obtuse triangles that have area $s$ and two sides with lengths $4$ and $10$. The set of all $s$ for which $\tau(s)$ is nonempty, but all triangles in $\tau(s)$ are congruent, is an interval $[a,b)$. Find $a^2+b^2$. | 736 |
Let $m/n$, in lowest terms, be the probability that a randomly chosen positive divisor of $10^{99}$ is an integer multiple of $10^{88}$. Find $m + n$. | 634 |
Find the number of sets $\{a,b,c\}$ of three distinct positive integers with the property that the product of $a,b,$ and $c$ is equal to the product of $11,21,31,41,51,61$. | 728 |
Given a nonnegative real number $x$, let $\langle x\rangle$ denote the fractional part of $x$; that is, $\langle x\rangle=x-\lfloor x\rfloor$, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$. Suppose that $a$ is positive, $\langle a^{-1}\rangle=\langle a^2\rangle$, and $2<a^2<3$. Find the value of $a^{12}-144a^{-1}$. | 233 |
Square $AIME$ has sides of length $10$ units. Isosceles triangle $GEM$ has base $EM$, and the area common to triangle $GEM$ and square $AIME$ is $80$ square units. Find the length of the altitude to $EM$ in $\triangle GEM$. | 25 |
The teams $T_1$, $T_2$, $T_3$, and $T_4$ are in the playoffs. In the semifinal matches, $T_1$ plays $T_4$, and $T_2$ plays $T_3$. The winners of those two matches will play each other in the final match to determine the champion. When $T_i$ plays $T_j$, the probability that $T_i$ wins is $\frac{i}{i+j}$, and the outcomes of all the matches are independent. The probability that $T_4$ will be the champion is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. | 781 |
Find the smallest positive integer $n$ for which the expansion of $(xy-3x+7y-21)^n$, after like terms have been collected, has at least 1996 terms. | 44 |
There is a unique positive real number $x$ such that the three numbers $\log_8{2x}$, $\log_4{x}$, and $\log_2{x}$, in that order, form a geometric progression with positive common ratio. The number $x$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. | 17 |
A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is $7.$ Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$ | 173 |
Jenn randomly chooses a number $J$ from $1, 2, 3,\ldots, 19, 20$. Bela then randomly chooses a number $B$ from $1, 2, 3,\ldots, 19, 20$ distinct from $J$. The value of $B - J$ is at least $2$ with a probability that can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. | 29 |
$a_1, a_2, \ldots, a_n$ is an arbitrary sequence of positive integers. A member of the sequence is picked at
random. Its value is $a$. Another member is picked at random, independently of the first. Its value is $b$. Then a third value, $c$. Show that the probability that $a + b +c$ is divisible by $3$ is at least $\frac14$. | \frac{1}{4} |
Let $ABCD$ be a square, and let $E$ and $F$ be points on $\overline{AB}$ and $\overline{BC},$ respectively. The line through $E$ parallel to $\overline{BC}$ and the line through $F$ parallel to $\overline{AB}$ divide $ABCD$ into two squares and two nonsquare rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square $ABCD.$ Find $\frac{AE}{EB} + \frac{EB}{AE}.$ | 18 |
There are $2^{10} = 1024$ possible 10-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than 3 adjacent letters that are identical. | 548 |
In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$, and the altitude to these bases has length $\log 16$. The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$, where $p$ and $q$ are positive integers. Find $p + q$. | 18 |
Lilypads $1,2,3,\ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad $1$. From any pad $k$ the frog jumps to either pad $k+1$ or pad $k+2$ chosen randomly with probability $\tfrac{1}{2}$ and independently of other jumps. The probability that the frog visits pad $7$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. | 107 |
Let \(a_1, a_2, a_3, \cdots\) be a non-decreasing sequence of positive integers. For \(m \ge 1\), define \(b_m = \min\{n: a_n \ge m\}\), that is, \(b_m\) is the minimum value of \(n\) such that \(a_n \ge m\). If \(a_{19} = 85\), determine the maximum value of \(a_1 + a_2 + \cdots + a_{19} + b_1 + b_2 + \cdots + b_{85}\). | 1700 |
Let $x,$ $y,$ and $z$ be positive real numbers that satisfy
\[2\log_{x}(2y) = 2\log_{2x}(4z) = \log_{2x^4}(8yz) \ne 0.\]
The value of $xy^5z$ can be expressed in the form $\frac{1}{2^{p/q}},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q.$ | 49 |
Find the number of five-digit positive integers, $n$, that satisfy the following conditions:
(a) the number $n$ is divisible by $5,$
(b) the first and last digits of $n$ are equal, and
(c) the sum of the digits of $n$ is divisible by $5.$ | 200 |
Freddy the frog is jumping around the coordinate plane searching for a river, which lies on the horizontal line $y = 24$. A fence is located at the horizontal line $y = 0$. On each jump Freddy randomly chooses a direction parallel to one of the coordinate axes and moves one unit in that direction. When he is at a point where $y=0$, with equal likelihoods he chooses one of three directions where he either jumps parallel to the fence or jumps away from the fence, but he never chooses the direction that would have him cross over the fence to where $y < 0$. Freddy starts his search at the point $(0, 21)$ and will stop once he reaches a point on the river. Find the expected number of jumps it will take Freddy to reach the river. | 273 |
A rational number written in base eight is $\underline{ab} . \underline{cd}$, where all digits are nonzero. The same number in base twelve is $\underline{bb} . \underline{ba}$. Find the base-ten number $\underline{abc}$. | 321 |
Find the number of functions $f(x)$ from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$ that satisfy $f(f(x)) = f(f(f(x)))$ for all $x$ in $\{1, 2, 3, 4, 5\}$. | 756 |
How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50? | 109 |
A sequence of numbers $x_{1},x_{2},x_{3},\ldots,x_{100}$ has the property that, for every integer $k$ between $1$ and $100,$ inclusive, the number $x_{k}$ is $k$ less than the sum of the other $99$ numbers. Given that $x_{50} = m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m + n$. | 173 |
Find the smallest integer $k$ for which the conditions
(1) $a_1,a_2,a_3\cdots$ is a nondecreasing sequence of positive integers
(2) $a_n=a_{n-1}+a_{n-2}$ for all $n>2$
(3) $a_9=k$
are satisfied by more than one sequence. | 748 |
Find the sum of all positive integers $n$ such that $\sqrt{n^2+85n+2017}$ is an integer. | 195 |
Given a rational number, write it as a fraction in lowest terms and calculate the product of the resulting numerator and denominator. For how many rational numbers between $0$ and $1$ will $20_{}^{}!$ be the resulting product? | 128 |
Let \(a, b, c,\) and \(d\) be real numbers that satisfy the system of equations
\begin{align*} a + b &= -3, \\ ab + bc + ca &= -4, \\ abc + bcd + cda + dab &= 14, \\ abcd &= 30. \end{align*}
There exist relatively prime positive integers \(m\) and \(n\) such that
\[a^2 + b^2 + c^2 + d^2 = \frac{m}{n}.\]Find \(m + n\). | 145 |
Let $ABCD$ be a parallelogram. Extend $\overline{DA}$ through $A$ to a point $P,$ and let $\overline{PC}$ meet $\overline{AB}$ at $Q$ and $\overline{DB}$ at $R.$ Given that $PQ = 735$ and $QR = 112,$ find $RC.$ | 308 |
What is the product of the real roots of the equation $x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}$? | 20 |
The shortest distances between an interior diagonal of a rectangular parallelepiped, $P$, and the edges it does not meet are $2\sqrt{5}$, $\frac{30}{\sqrt{13}}$, and $\frac{15}{\sqrt{10}}$. Determine the volume of $P$. | 750 |
A positive integer is called ascending if, in its decimal representation, there are at least two digits and each digit is less than any digit to its right. How many ascending positive integers are there? | 502 |
Three dice with faces numbered 1 through 6 are stacked as shown. Seven of the eighteen faces are visible, leaving eleven faces hidden (back, bottom, between). The total number of dots NOT visible in this view is | 41 |
The solutions to the system of equations
$\log_{225}x+\log_{64}y=4$
$\log_{x}225-\log_{y}64=1$
are $(x_1,y_1)$ and $(x_2,y_2)$. Find $\log_{30}\left(x_1y_1x_2y_2\right)$. | 12 |
Gary purchased a large beverage, but only drank $m/n$ of it, where $m$ and $n$ are relatively prime positive integers. If he had purchased half as much and drunk twice as much, he would have wasted only $2/9$ as much beverage. Find $m+n$. | 37 |
Find, with proof, the number of positive integers whose base-$n$ representation consists of distinct digits with the property that, except for the leftmost digit, every digit differs by $\pm 1$ from some digit further to the left. (Your answer should be an explicit function of $n$ in simplest form.) | 2^{n+1} - 2(n+1) |
A frog is positioned at the origin of the coordinate plane. From the point $(x, y)$, the frog can jump to any of the points $(x + 1, y)$, $(x + 2, y)$, $(x, y + 1)$, or $(x, y + 2)$. Find the number of distinct sequences of jumps in which the frog begins at $(0, 0)$ and ends at $(4, 4)$. | 556 |
The increasing geometric sequence $x_{0},x_{1},x_{2},\ldots$ consists entirely of integral powers of $3.$ Given that
$\sum_{n=0}^{7}\log_{3}(x_{n}) = 308$ and $56 \leq \log_{3}\left ( \sum_{n=0}^{7}x_{n}\right ) \leq 57,$
find $\log_{3}(x_{14}).$ | 91 |
Find the positive integer $n\,$ for which
\[\lfloor\log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994\]
(For real $x\,$, $\lfloor x\rfloor\,$ is the greatest integer $\le x.\,$) | 312 |
Maya lists all the positive divisors of $2010^2$. She then randomly selects two distinct divisors from this list. Let $p$ be the probability that exactly one of the selected divisors is a perfect square. The probability $p$ can be expressed in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. | 107 |
There is a prime number $p$ such that $16p+1$ is the cube of a positive integer. Find $p$. | 307 |
End of preview. Expand
in Dataset Viewer.
Orz Math Filtered
Dataset from Open-Reasoner-Zero. We clean the original data by:
- remove incomplete problem and answer
- remove image-based problem
- remove single-choice problem
- remove url
The details for how to collect data are described in their paper.
Citation
@misc{OpenReasonerZero2025,
title={Open-Reasoner-Zero: An Open Source Approach to Scaling Reinforcement Learning on the Base Model},
author={Jingcheng Hu and Yinmin Zhang and Qi Han and Daxin Jiang and Xiangyu Zhang, Heung-Yeung Shum},
year={2025},
howpublished={\url{https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero}},
}
- Downloads last month
- 0