File size: 2,655 Bytes
f841429
 
dd472da
 
c33d539
 
 
 
dd472da
 
 
 
 
a1a056a
8b708be
f99cefc
a1a056a
 
8b708be
a1a056a
 
 
 
 
8b708be
a1a056a
 
 
 
 
 
 
8b708be
a1a056a
 
 
8b708be
a1a056a
8b708be
a1a056a
8b708be
a1a056a
 
 
dd472da
 
8a90da5
dd472da
 
8a90da5
dd472da
 
8a90da5
dd472da
 
8a90da5
dd472da
 
8a90da5
dd472da
8a90da5
 
dd472da
 
 
 
 
 
 
 
 
 
 
 
 
f841429
c33d539
 
 
 
 
 
 
 
 
 
c79f25e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
size_categories:
- 1K<n<10K
task_categories:
- object-detection
tags:
- industry
dataset_info:
  features:
  - name: image
    dtype: image
  - name: labels
    sequence:
    - name: object_type
      dtype: string
    - name: truncation
      dtype: float32
    - name: occlusion
      dtype: int32
    - name: alpha
      dtype: int32
    - name: left
      dtype: float32
    - name: top
      dtype: float32
    - name: right
      dtype: float32
    - name: bottom
      dtype: float32
    - name: height
      dtype: int32
    - name: width
      dtype: int32
    - name: length
      dtype: int32
    - name: x
      dtype: int32
    - name: y
      dtype: int32
    - name: z
      dtype: int32
    - name: rotation_y
      dtype: int32
  splits:
  - name: video1
    num_bytes: 4497677.132999999
    num_examples: 1261
  - name: video2
    num_bytes: 4116557.136
    num_examples: 1221
  - name: video3
    num_bytes: 4034190.129
    num_examples: 1221
  - name: video4
    num_bytes: 5164007.345000001
    num_examples: 1481
  - name: video5
    num_bytes: 4733783.518
    num_examples: 1301
  download_size: 19236723
  dataset_size: 22546215.261
configs:
- config_name: default
  data_files:
  - split: video1
    path: data/video1-*
  - split: video2
    path: data/video2-*
  - split: video3
    path: data/video3-*
  - split: video4
    path: data/video4-*
  - split: video5
    path: data/video5-*
---

The **IndustrialDetectionStaticCameras** dataset is divided into five primary files named `videoY`, where `Y=1,2,3,4,5`. Each `videoY` folder contains the following:
 - The video of the scene in `.mp4` format: `videoY.mp4`
 - A folder with the images of each frame of the video: `imgs_videoY` 
 - A folder that includes for each frame a `.txt` file that holds for each labelled object a line with the annotation in kitti format: `annotations_videoY`

**Remark:** Each label file contains a set of lines, with each line representing the annotation for a single object in the corresponding image. The format of each line is as follows:

`<object_type> <truncation> <occlusion> <alpha> <left> <top> <right> <bottom> <height> <width> <length> <x> <y> <z> <rotation_y>`, 

where only the fields `<object_type>, <left>, <top>, <right>, <bottom>` and `<rotation_y>` are considered. The `<rotation_y>` field has been used to indicate whether the labelled object is a static object in the scene or not -value `1` represents that object is static and value `0` symbolizes that it is not-.

### Download the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("jjldo21/IndustrialDetectionStaticCameras")
```