isSTAC
large_stringlengths
1
1
target
large_stringlengths
0
0
hello
large_stringlengths
5
5
id
large_stringlengths
7
7
crs
large_stringlengths
9
9
geotransform
large_stringlengths
18
18
input
large_stringlengths
0
0
start_datetime
large_stringlengths
19
19
end_datetime
large_stringlengths
19
19
isText
large_stringlengths
1
1
target__dtype
large_stringlengths
3
3
target__shape
large_stringlengths
13
13
target__offset
large_stringlengths
11
11
input__dtype
large_stringlengths
3
3
input__shape
large_stringlengths
14
14
input__offset
large_stringlengths
16
16
_checksum
large_stringlengths
32
32
1
world
0000001
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
3d4f55982675315b6aa5a0347c472a2e
1
world
0000002
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
e6090d22144413e146766469aadad899
1
world
0000003
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
efd5de45fb0bd2526ec00e8083bad952
1
world
0000004
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
baa7813552c3e0d582204d393910a910
1
world
0000005
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
23e269d9b20d88886a1bbd056a2fe1fb
1
world
0000006
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
e5407be1f2b0277399b43b361913e1ae
1
world
0000007
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
20d8c716039369b5fdf538cb6435eaad
1
world
0000008
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
45f7adfd1c6205fbe34e6ca69c044b59
1
world
0000009
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
c31d8ed3cf8757d664c0a2eda72945dd
1
world
000000A
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
af87acbba5b8b75ccf22f664a5651ed0
1
world
000000B
EPSG:4326
[0 ,1 ,0 ,0 ,0 ,1]
2020-01-01T00:00:00
2020-01-01T00:00:00
0
I64
[1, 128, 128]
[0, 131072]
F32
[13, 128, 128]
[131072, 983040]
47a64fa38aa91ab4033f446c7cea7a1b

cloudsen12

A dataset about clouds from Sentinel-2

CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms. CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper: CloudSEN12 - a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2.

ML-STAC Snippet

import mlstac
secret = 'https://huggingface.co/datasets/jfloresf/mlstac-demo/resolve/main/main.json'
train_db = mlstac.load(secret, framework='torch', stream=True, device='cpu')

Sensor: Sentinel2 - MSI

ML-STAC Task: TensorToTensor, TensorSegmentation

Data raw repository: https://cloudsen12.github.io/

Dataset discussion: https://github.com/IPL-UV/ML-STAC/discussions/2

Review mean score: 5.0

Split_strategy: random

Paper: https://www.nature.com/articles/s41597-022-01878-2

Data Providers

Name Role URL
Image & Signal Processing ['host'] https://isp.uv.es/
ESA ['producer'] https://www.esa.int/

Curators

Name Organization URL
Jair Flores OEFA http://jflores.github.io/

Reviewers

Name Organization URL Score
Cesar Aybar Image & Signal Processing http://csaybar.github.io/ 5

Labels

Name Value
clear 0
thick-cloud 1
thin-cloud 2
cloud-shadow 3

Dimensions

input

Axis Name Description
0 C Spectral bands
1 H Height
2 W Width

target

Axis Name Description
0 C Hand-crafted labels
1 H Height
2 W Width

Spectral Bands

Name Common Name Description Center Wavelength Full Width Half Max Index
B01 coastal aerosol Band 1 - Coastal aerosol - 60m 443.5 17.0 0
B02 blue Band 2 - Blue - 10m 496.5 53.0 1
B03 green Band 3 - Green - 10m 560.0 34.0 2
B04 red Band 4 - Red - 10m 664.5 29.0 3
B05 red edge 1 Band 5 - Vegetation red edge 1 - 20m 704.5 13.0 4
B06 red edge 2 Band 6 - Vegetation red edge 2 - 20m 740.5 13.0 5
B07 red edge 3 Band 7 - Vegetation red edge 3 - 20m 783.0 18.0 6
B08 NIR Band 8 - Near infrared - 10m 840.0 114.0 7
B8A red edge 4 Band 8A - Vegetation red edge 4 - 20m 864.5 19.0 8
B09 water vapor Band 9 - Water vapor - 60m 945.0 18.0 9
B10 cirrus Band 10 - Cirrus - 60m 1375.5 31.0 10
B11 SWIR 1 Band 11 - Shortwave infrared 1 - 20m 1613.5 89.0 11
B12 SWIR 2 Band 12 - Shortwave infrared 2 - 20m 2199.5 173.0 12
Downloads last month
82
Edit dataset card