File size: 4,248 Bytes
7ef773c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1abfdff
7ef773c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CVIT IIIT-H PIB Multilingual Corpus"""


import os

import datasets


_CITATION = """\
@InProceedings{cvit-pib:multilingual-corpus,
title = {Revisiting Low Resource Status of Indian Languages in Machine Translation},
authors={Jerin Philip, Shashank Siripragada, Vinay P. Namboodiri, C.V. Jawahar
},
year={2020}
}
"""

_DESCRIPTION = """\
This new dataset is the large scale sentence aligned corpus in 11 Indian languages,
viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages.
"""

_URL = "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar"

_LanguagePairs = [
    "or-ur",
    "ml-or",
    "bn-ta",
    "gu-mr",
    "hi-or",
    "en-or",
    "mr-ur",
    "en-ta",
    "hi-ta",
    "bn-en",
    "bn-or",
    "ml-ta",
    "gu-ur",
    "bn-ml",
    "ml-pa",
    "en-pa",
    "bn-hi",
    "hi-pa",
    "gu-te",
    "pa-ta",
    "hi-ml",
    "or-te",
    "en-ml",
    "en-hi",
    "bn-pa",
    "mr-te",
    "mr-pa",
    "bn-te",
    "gu-hi",
    "ta-ur",
    "te-ur",
    "or-pa",
    "gu-ml",
    "gu-pa",
    "hi-te",
    "en-te",
    "ml-te",
    "pa-ur",
    "hi-ur",
    "mr-or",
    "en-ur",
    "ml-ur",
    "bn-mr",
    "gu-ta",
    "pa-te",
    "bn-gu",
    "bn-ur",
    "ml-mr",
    "or-ta",
    "ta-te",
    "gu-or",
    "en-gu",
    "hi-mr",
    "mr-ta",
    "en-mr",
]


class PibConfig(datasets.BuilderConfig):
    """BuilderConfig for PIB"""

    def __init__(self, language_pair, **kwargs):
        super().__init__(**kwargs)
        """

        Args:
            language_pair: language pair, you want to load
            **kwargs: keyword arguments forwarded to super.
        """
        self.src, self.tgt = language_pair.split("-")


class Pib(datasets.GeneratorBasedBuilder):
    """This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz.
    CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages.
    """

    BUILDER_CONFIG_CLASS = PibConfig
    BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs]

    def _info(self):
        # TODO: Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=(self.config.src, self.config.tgt))}
            ),
            supervised_keys=(self.config.src, self.config.tgt),
            homepage="http://preon.iiit.ac.in/~jerin/bhasha/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_URL)

        data_dir = os.path.join(dl_dir, f"pib/{self.config.src}-{self.config.tgt}")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"train.{self.config.src}"),
                    "labelpath": os.path.join(data_dir, f"train.{self.config.tgt}"),
                },
            ),
        ]

    def _generate_examples(self, filepath, labelpath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f1, open(labelpath, encoding="utf-8") as f2:
            src = f1.read().split("\n")[:-1]
            tgt = f2.read().split("\n")[:-1]
            for idx, (s, t) in enumerate(zip(src, tgt)):
                yield idx, {"translation": {self.config.src: s, self.config.tgt: t}}