File size: 10,388 Bytes
f2fe64f
 
 
 
 
e213bbe
f2fe64f
4b0e0e7
f2fe64f
 
 
 
 
 
 
 
 
 
085ddd2
29a3e55
971e445
 
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
9acf4f6
 
971e445
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
 
9acf4f6
971e445
e326197
9acf4f6
e326197
9acf4f6
 
971e445
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
 
9acf4f6
971e445
e326197
9acf4f6
e326197
9acf4f6
 
971e445
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
 
9acf4f6
971e445
e326197
9acf4f6
e326197
9acf4f6
 
971e445
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
 
9acf4f6
971e445
e326197
9acf4f6
e326197
9acf4f6
 
971e445
 
 
 
 
 
 
 
b0cf068
 
 
 
 
 
971e445
 
 
 
 
 
 
 
9acf4f6
971e445
 
9acf4f6
971e445
e326197
9acf4f6
e326197
9acf4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2fe64f
 
81e1385
f2fe64f
 
 
 
085ddd2
f2fe64f
 
 
085ddd2
 
f2fe64f
 
 
 
 
 
 
 
 
 
 
 
 
d8eceb8
f2fe64f
 
 
 
4b0e0e7
 
 
f2fe64f
 
 
4b0e0e7
 
 
 
f2fe64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0e0e7
f2fe64f
 
 
4b0e0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8eceb8
 
 
971e445
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license: odc-by
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: codah
pretty_name: COmmonsense Dataset Adversarially-authored by Humans
dataset_info:
- config_name: codah
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 571196
    num_examples: 2776
  download_size: 352902
  dataset_size: 571196
- config_name: fold_0
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 344900
    num_examples: 1665
  - name: validation
    num_bytes: 114199
    num_examples: 556
  - name: test
    num_bytes: 112097
    num_examples: 555
  download_size: 379179
  dataset_size: 571196
- config_name: fold_1
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 340978
    num_examples: 1665
  - name: validation
    num_bytes: 114199
    num_examples: 556
  - name: test
    num_bytes: 116019
    num_examples: 555
  download_size: 379728
  dataset_size: 571196
- config_name: fold_2
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 342281
    num_examples: 1665
  - name: validation
    num_bytes: 114199
    num_examples: 556
  - name: test
    num_bytes: 114716
    num_examples: 555
  download_size: 379126
  dataset_size: 571196
- config_name: fold_3
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 342832
    num_examples: 1665
  - name: validation
    num_bytes: 114199
    num_examples: 556
  - name: test
    num_bytes: 114165
    num_examples: 555
  download_size: 379178
  dataset_size: 571196
- config_name: fold_4
  features:
  - name: id
    dtype: int32
  - name: question_category
    dtype:
      class_label:
        names:
          '0': Idioms
          '1': Reference
          '2': Polysemy
          '3': Negation
          '4': Quantitative
          '5': Others
  - name: question_propmt
    dtype: string
  - name: candidate_answers
    sequence: string
  - name: correct_answer_idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 342832
    num_examples: 1665
  - name: validation
    num_bytes: 114165
    num_examples: 555
  - name: test
    num_bytes: 114199
    num_examples: 556
  download_size: 379178
  dataset_size: 571196
configs:
- config_name: codah
  data_files:
  - split: train
    path: codah/train-*
- config_name: fold_0
  data_files:
  - split: train
    path: fold_0/train-*
  - split: validation
    path: fold_0/validation-*
  - split: test
    path: fold_0/test-*
- config_name: fold_1
  data_files:
  - split: train
    path: fold_1/train-*
  - split: validation
    path: fold_1/validation-*
  - split: test
    path: fold_1/test-*
- config_name: fold_2
  data_files:
  - split: train
    path: fold_2/train-*
  - split: validation
    path: fold_2/validation-*
  - split: test
    path: fold_2/test-*
- config_name: fold_3
  data_files:
  - split: train
    path: fold_3/train-*
  - split: validation
    path: fold_3/validation-*
  - split: test
    path: fold_3/test-*
- config_name: fold_4
  data_files:
  - split: train
    path: fold_4/train-*
  - split: validation
    path: fold_4/validation-*
  - split: test
    path: fold_4/test-*
---

# Dataset Card for COmmonsense Dataset Adversarially-authored by Humans

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
- **Repository:** https://github.com/Websail-NU/CODAH
- **Paper:** https://aclanthology.org/W19-2008/
- **Paper:** https://arxiv.org/abs/1904.04365

### Dataset Summary

The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense
question-answering in the sentence completion style of SWAG. As opposed to other automatically generated
NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model
and use this information to design challenging commonsense questions.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]
## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The CODAH dataset is made available under the Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/1.0/

### Citation Information

```
@inproceedings{chen-etal-2019-codah,
    title = "{CODAH}: An Adversarially-Authored Question Answering Dataset for Common Sense",
    author = "Chen, Michael  and
      D{'}Arcy, Mike  and
      Liu, Alisa  and
      Fernandez, Jared  and
      Downey, Doug",
    editor = "Rogers, Anna  and
      Drozd, Aleksandr  and
      Rumshisky, Anna  and
      Goldberg, Yoav",
    booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
    month = jun,
    year = "2019",
    address = "Minneapolis, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-2008",
    doi = "10.18653/v1/W19-2008",
    pages = "63--69",
    abstract = "Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3{\%}, and the performance of the best baseline accuracy of 65.3{\%} by the OpenAI GPT model.",
}
```

### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.