Datasets:
Tasks:
Question Answering
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 10,388 Bytes
f2fe64f e213bbe f2fe64f 4b0e0e7 f2fe64f 085ddd2 29a3e55 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 e326197 9acf4f6 e326197 9acf4f6 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 e326197 9acf4f6 e326197 9acf4f6 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 e326197 9acf4f6 e326197 9acf4f6 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 e326197 9acf4f6 e326197 9acf4f6 971e445 b0cf068 971e445 9acf4f6 971e445 9acf4f6 971e445 e326197 9acf4f6 e326197 9acf4f6 f2fe64f 81e1385 f2fe64f 085ddd2 f2fe64f 085ddd2 f2fe64f d8eceb8 f2fe64f 4b0e0e7 f2fe64f 4b0e0e7 f2fe64f 4b0e0e7 f2fe64f 4b0e0e7 d8eceb8 971e445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license: odc-by
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: codah
pretty_name: COmmonsense Dataset Adversarially-authored by Humans
dataset_info:
- config_name: codah
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 571196
num_examples: 2776
download_size: 352902
dataset_size: 571196
- config_name: fold_0
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 344900
num_examples: 1665
- name: validation
num_bytes: 114199
num_examples: 556
- name: test
num_bytes: 112097
num_examples: 555
download_size: 379179
dataset_size: 571196
- config_name: fold_1
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 340978
num_examples: 1665
- name: validation
num_bytes: 114199
num_examples: 556
- name: test
num_bytes: 116019
num_examples: 555
download_size: 379728
dataset_size: 571196
- config_name: fold_2
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 342281
num_examples: 1665
- name: validation
num_bytes: 114199
num_examples: 556
- name: test
num_bytes: 114716
num_examples: 555
download_size: 379126
dataset_size: 571196
- config_name: fold_3
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 342832
num_examples: 1665
- name: validation
num_bytes: 114199
num_examples: 556
- name: test
num_bytes: 114165
num_examples: 555
download_size: 379178
dataset_size: 571196
- config_name: fold_4
features:
- name: id
dtype: int32
- name: question_category
dtype:
class_label:
names:
'0': Idioms
'1': Reference
'2': Polysemy
'3': Negation
'4': Quantitative
'5': Others
- name: question_propmt
dtype: string
- name: candidate_answers
sequence: string
- name: correct_answer_idx
dtype: int32
splits:
- name: train
num_bytes: 342832
num_examples: 1665
- name: validation
num_bytes: 114165
num_examples: 555
- name: test
num_bytes: 114199
num_examples: 556
download_size: 379178
dataset_size: 571196
configs:
- config_name: codah
data_files:
- split: train
path: codah/train-*
- config_name: fold_0
data_files:
- split: train
path: fold_0/train-*
- split: validation
path: fold_0/validation-*
- split: test
path: fold_0/test-*
- config_name: fold_1
data_files:
- split: train
path: fold_1/train-*
- split: validation
path: fold_1/validation-*
- split: test
path: fold_1/test-*
- config_name: fold_2
data_files:
- split: train
path: fold_2/train-*
- split: validation
path: fold_2/validation-*
- split: test
path: fold_2/test-*
- config_name: fold_3
data_files:
- split: train
path: fold_3/train-*
- split: validation
path: fold_3/validation-*
- split: test
path: fold_3/test-*
- config_name: fold_4
data_files:
- split: train
path: fold_4/train-*
- split: validation
path: fold_4/validation-*
- split: test
path: fold_4/test-*
---
# Dataset Card for COmmonsense Dataset Adversarially-authored by Humans
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
- **Repository:** https://github.com/Websail-NU/CODAH
- **Paper:** https://aclanthology.org/W19-2008/
- **Paper:** https://arxiv.org/abs/1904.04365
### Dataset Summary
The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense
question-answering in the sentence completion style of SWAG. As opposed to other automatically generated
NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model
and use this information to design challenging commonsense questions.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The CODAH dataset is made available under the Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/1.0/
### Citation Information
```
@inproceedings{chen-etal-2019-codah,
title = "{CODAH}: An Adversarially-Authored Question Answering Dataset for Common Sense",
author = "Chen, Michael and
D{'}Arcy, Mike and
Liu, Alisa and
Fernandez, Jared and
Downey, Doug",
editor = "Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Goldberg, Yoav",
booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2008",
doi = "10.18653/v1/W19-2008",
pages = "63--69",
abstract = "Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3{\%}, and the performance of the best baseline accuracy of 65.3{\%} by the OpenAI GPT model.",
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |