File size: 4,078 Bytes
dca3754 cd48917 dca3754 6a4ecbb 0ee7fb5 dca3754 7052c88 dca3754 29c035b dca3754 7052c88 dca3754 36e6665 7052c88 dca3754 e66f06c dca3754 f219a93 7052c88 dca3754 f6d2989 dca3754 7094add dca3754 969b9a0 5719d18 b4bb17d dca3754 9cdc9d1 dca3754 9cdc9d1 dca3754 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# coding=utf-8
# Lint as: python3
"""test set"""
import csv
import os
import json
import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
Lorem ipsum
"""
_BASE_URL = "https://huggingface.co/datasets/j-krzywdziak/test/tree/main"
_DATA_URL = "https://huggingface.co/datasets/j-krzywdziak/test/blob/main/dev.tar"
_PROMPTS_URLS = {"test": "https://huggingface.co/datasets/j-krzywdziak/test/raw/main/dev.tsv"}
logger = datasets.logging.get_logger(__name__)
class TestConfig(datasets.BuilderConfig):
"""Lorem impsum."""
def __init__(self, name, **kwargs):
# self.language = kwargs.pop("language", None)
# self.release_date = kwargs.pop("release_date", None)
# self.num_clips = kwargs.pop("num_clips", None)
# self.num_speakers = kwargs.pop("num_speakers", None)
# self.validated_hr = kwargs.pop("validated_hr", None)
# self.total_hr = kwargs.pop("total_hr", None)
# self.size_bytes = kwargs.pop("size_bytes", None)
# self.size_human = size_str(self.size_bytes)
description = (
f"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor "
f"incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud "
f"exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure "
f"dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. "
f"Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt "
f"mollit anim id est laborum."
)
super(TestConfig, self).__init__(
name=name,
description=description,
**kwargs,
)
class TestASR(datasets.GeneratorBasedBuilder):
"""Lorem ipsum."""
BUILDER_CONFIGS = [
TestConfig(
name="Test Dataset",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"audio_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"ngram": datasets.Value("string")
}
),
supervised_keys=None,
homepage=_BASE_URL,
citation=_CITATION
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DATA_URL)
meta_path = dl_manager.download(_PROMPTS_URLS)
return [datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"meta_path": meta_path["test"],
"audio_files": dl_manager.iter_archive(archive_path)
}
)]
def _generate_examples(self, meta_path, audio_files):
"""Lorem ipsum."""
print(audio_files)
metadata = {}
with open(meta_path, encoding="utf-8") as f:
next(f)
for row in f:
print(row)
r = row.split("\t")
print(r)
audio_id = r[0]
ngram = r[1]
metadata[audio_id] = {"audio_id": audio_id,
"ngram": ngram}
id_ = 0
for path, f in audio_files:
print(path, f)
_, audio_name = os.path.split(path)
print(audio_name)
print(metadata)
if audio_name in metadata:
audio = {"bytes": f.read()}
yield id_, {**metadata[audio_id], "audio": audio}
id_ +=1
|