File size: 9,561 Bytes
8660f0c
cc63030
8660f0c
 
ba3aa73
 
 
 
 
 
 
 
 
 
 
 
c72624b
13b6b9f
8660f0c
 
84f500a
307a633
84f500a
 
 
ba5f95f
 
 
 
570fb9a
7042140
 
8660f0c
570fb9a
ba5f95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570fb9a
ba5f95f
570fb9a
 
 
 
 
ba5f95f
 
8660f0c
4862e1b
ba5f95f
 
8660f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e263a05
570fb9a
ba5f95f
7042140
853164c
63be6c2
 
 
 
570fb9a
 
 
8660f0c
ef1c2da
ccace69
ef1c2da
43da752
ccace69
ef1c2da
ccace69
ef1c2da
63f628e
ccace69
ef1c2da
7f7603f
ef1c2da
43da752
ccace69
ef1c2da
 
 
ccace69
 
63f628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccace69
6e52a8e
 
 
 
 
 
 
 
 
8660f0c
 
 
ba3aa73
 
 
 
 
8660f0c
 
 
 
7675e40
8660f0c
83bb1c9
8660f0c
 
7675e40
8660f0c
 
83bb1c9
 
 
8660f0c
1ea1710
7675e40
1ea1710
 
 
 
 
8660f0c
 
 
 
 
7675e40
8660f0c
 
83bb1c9
8660f0c
 
 
 
 
 
 
 
c6f3caa
9bbb296
 
 
6e52a8e
654a621
559c591
 
ab9cce6
90d2932
c6f3caa
ba5f95f
 
 
 
c6f3caa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
pretty_name: Wind Tunnel 20K Dataset
size_categories:
- 10K<n<100K
task_categories:
- feature-extraction
- graph-ml
- image-to-3d
language:
- en
tags:
- simulation
- openfoam
- physics
- windtunnel
- inductiva
- machine learning
- synthetic
---

<p align="center">
  <img src="https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/pressure_field_mesh.png", width="500px">
</p>


# Wind Tunnel 20K Dataset
The Wind Tunnel Dataset contains 19,812 OpenFOAM simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel. 
Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles
(0°, 180° and 3 random angles).
The meshes for these automobile-like objects were generated using the Instant Mesh model on images sourced from the Stanford Cars Dataset. 
To ensure stable and reliable results, each simulation runs for 300 iterations.
The entire dataset of 20,000 simulations is organized into three subsets: 70% for training, 20% for validation, and 10% for testing.

The data generation process itself was orchestrated using the [Inductiva API](https://inductiva.ai/), 
which allowed us to run hundreds of OpenFOAM simulations in parallel on the cloud. 


# Why
Existing object datasets have many limitations: they are either small in size, closed source, or have low quality meshes. 
Hence, we decided to generate a new dataset using the [InstantMesh](https://github.com/TencentARC/InstantMesh) model, 
which is open-source (Apache-2.0) and is currently state-of-the-art in image-to-mesh generation.

The automobile-like meshes were generated by running the image-to-mesh model [InstantMesh](https://github.com/TencentARC/InstantMesh) 
on 1k images from the publicly available (Apache-2.0)
[Stanford Cars Dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset) consisting of 16,185 images of automobiles.

Naturally, running the image-to-mesh model leads to meshes that may have certain defects, such as irregular surfaces, asymmetry issues
and disconnected components. Therefore, after running the image-to-mesh model, we run a custom post-processing step where we try to
improve the meshes quality. We used PCA to align the mesh with the main axis and we removed disconnected components. 

The resulting set of meshes still have little defects, such as presence of "spikes" or "cavities" in supposedly flat areas and
asymmetric shapes, among others. We consider these little defects as valuable features of the dataset not as issues, since from the
point of view of the learning problem, they bring challenges to the model that we believe will contribute to obtaining more robust
and generalizable models. 


# How did we generate the dataset

1. Generating Input Meshes, using InstantMesh on Standord Cars Dataset and postprocess the input meshes.
2. Running OpenFoam on the Input Meshes with the Inductiva API.
We ran OpenFoam simulations with different wind speeds and object angles on the input meshes.
This produces an output mesh that contains all the information named `openfoam_mesh.obj`;
4. We postprocessed the OpenFoam output to generate streamlines and pressure_map meshes.

The code used to generate the meshes and postprocess them is available on github: [https://github.com/inductiva/datasets-generation](https://github.com/inductiva/datasets-generation).



# Dataset Structure
```
data
├── train
│   ├── <SIMULATION_ID>
│   │   ├── input_mesh.obj
│   │   ├── openfoam_mesh.obj
│   │   ├── pressure_field_mesh.vtk
│   │   ├── simulation_metadata.json
│   │   └── streamlines_mesh.ply
│   └── ...
├── validation
│   └── ...
└── test
    └── ...
```


## Dataset Files
Each simulation in the Wind Tunnel Dataset is accompanied by several key files that provide both the input and the output data of the simulations. 
Here’s a breakdown of the files included in each simulation:
- **[input_mesh.obj](#input_meshobj)**: OBJ file with the input mesh. These were generated using the InstantMesh model by the process described in section link.
- **[openfoam_mesh.obj](#openfoam_meshobj)**: OBJ file with the OpenFOAM mesh. (explicar)
- **[pressure_field_mesh.vtk](#pressure_field_meshvtk)**: VTK file with the pressure field data. (explicar)
- **[streamlines_mesh.ply](#streamlines_meshply)**: PLY file with the streamlines. (posprocessing)
- **[metadata.json](#metadatajson)**: JSON with metadata about the input parameters and about some output results such as the force coefficients (obtained via simulation) and the path of the output files.


### input_mesh.obj

| **Input Mesh**               | **Points Histogram**           |
|-------------------------------|------------------------------|
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Histogram](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png) |

### openfoam_mesh.obj
| **Open Foam Mesh**               | **Points Histogram**           |
|-------------------------------|------------------------------|
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_foam.png) |

### pressure_field_mesh.obj
| **Pressure Field Mesh**               | **Points Histogram**           |
|-------------------------------|------------------------------|
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png)) |

### streamlines_mesh.ply
| **Streamlines Mesh**               |
|-------------------------------|
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png)  |

### metadata.obj
  ```json
    {
      "id": "1w63au1gpxgyn9kun5q9r7eqa",
      "object_file": "object_24.obj",
      "wind_speed": 35,
      "rotate_angle": 332,
      "num_iterations": 300,
      "resolution": 5,
      "drag_coefficient": 0.8322182,
      "moment_coefficient": 0.3425206,
      "lift_coefficient": 0.1824983,
      "front_lift_coefficient": 0.4337698,
      "rear_lift_coefficient": -0.2512715,
      "input_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/input_mesh.obj",
      "openfoam_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/openfoam_mesh.obj",
      "pressure_field_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/pressure_field_mesh.vtk",
      "streamlines_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/streamlines_mesh.ply"
  }
  ```


### Dataset Statistics

The dataset comprises 19,812 valid samples out of a total of 20,000 simulations, with [188 submissions failing](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/failed_tasks.txt) due to numerical errors in OpenFOAM. 
The complete dataset requires X GB of storage. Below, the histograms illustrate the distribution of points:

| **Input Mesh**         | **OpenFOAM Mesh**           |
|-------------------------------|------------------------------|
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png) | ![OpenFOAM Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_foam.png) |
  

## Downloading the Dataset:

To download the dataset you have to install the [Datasets package](https://huggingface.co/docs/datasets/en/index) by HuggingFace:

```python
pip install datasets
```

### 1. Using snapshot_download()

```python
import huggingface_hub

dataset_name = "inductiva/windtunnel-20k"

# Download the entire dataset
huggingface_hub.snapshot_download(repo_id=dataset_name, repo_type="dataset")

# Download to a specific local directory
huggingface_hub.snapshot_download(
    repo_id=dataset_name, repo_type="dataset", local_dir="local_folder"
)

# Download only the simulation metadata across all simulations
huggingface_hub.snapshot_download(
    repo_id=dataset_name,
    repo_type="dataset",
    local_dir="local_folder",
    allow_patterns=["*/*/*/simulation_metadata.json"]
)
```

### 2. Using load_dataset()

```python
import datasets

# Load the dataset (streaming is supported)
dataset = datasets.load_dataset("inductiva/windtunnel-20k", streaming=False)

# Display dataset information
print(dataset)

# Access a sample from the training set
sample = dataset["train"][0]
print("Sample from training set:", sample)
```

## OpenFoam Parameters

You can find the OpenFoam configuration files on github: [https://github.com/inductiva/wind-tunnel/tree/main/windtunnel/templates](https://github.com/inductiva/wind-tunnel/tree/main/windtunnel/templates)




## What's next?
If you have any issues using this dataset, feel free to reach out to us at [support@intuctiva.ai](support@intuctiva.ai).

If you detect any clearly problematic mesh, please let us know so we can correct that issue for the next version of the
Windtunnel-20k dataset.


To learn more about how we created this dataset—or how you can generate synthetic datasets for Physics-AI models—visit [Inductiva.AI](inductiva.ai) or check out our blog post on [transforming complex simulation workflows into easy-to-use Python classes](https://inductiva.ai/blog/article/transform-complex-simulations).