File size: 32,477 Bytes
94fb979
 
 
 
 
f5fc513
94fb979
f5fc513
94fb979
 
 
 
d50f33e
 
 
94fb979
 
 
d50f33e
 
 
94fb979
d50f33e
 
 
5c2107b
d50f33e
 
e1df0ef
85314d3
d50f33e
 
 
 
 
 
 
 
 
 
 
 
 
3589e6b
 
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a87b
 
 
83a2198
 
09a0a6c
 
94fb979
 
 
 
 
 
e1df0ef
94fb979
 
 
e1df0ef
 
94fb979
 
 
 
 
 
 
 
 
 
 
 
 
09a0a6c
94fb979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a0a6c
 
 
 
3589e6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- id
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- question-answering
- text-classification
- token-classification
task_ids:
- closed-domain-qa
- multi-class-classification
- named-entity-recognition
- part-of-speech
- semantic-similarity-classification
- sentiment-classification
paperswithcode_id: indonlu-benchmark
pretty_name: IndoNLU
configs:
- bapos
- casa
- emot
- facqa
- hoasa
- keps
- nergrit
- nerp
- posp
- smsa
- terma
- wrete
tags:
- keyphrase-extraction
- span-extraction
- aspect-based-sentiment-analysis
dataset_info:
- config_name: emot
  features:
  - name: tweet
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: sadness
          1: anger
          2: love
          3: fear
          4: happy
  splits:
  - name: train
    num_bytes: 686418
    num_examples: 3521
  - name: validation
    num_bytes: 84082
    num_examples: 440
  - name: test
    num_bytes: 84856
    num_examples: 440
  download_size: 840917
  dataset_size: 855356
- config_name: smsa
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: positive
          1: neutral
          2: negative
  splits:
  - name: train
    num_bytes: 2209874
    num_examples: 11000
  - name: validation
    num_bytes: 249629
    num_examples: 1260
  - name: test
    num_bytes: 77041
    num_examples: 500
  download_size: 2509229
  dataset_size: 2536544
- config_name: casa
  features:
  - name: sentence
    dtype: string
  - name: fuel
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: machine
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: others
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: part
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: price
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: service
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  splits:
  - name: train
    num_bytes: 110415
    num_examples: 810
  - name: validation
    num_bytes: 11993
    num_examples: 90
  - name: test
    num_bytes: 23553
    num_examples: 180
  download_size: 144903
  dataset_size: 145961
- config_name: hoasa
  features:
  - name: sentence
    dtype: string
  - name: ac
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: air_panas
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: bau
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: general
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: kebersihan
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: linen
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: service
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: sunrise_meal
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: tv
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  - name: wifi
    dtype:
      class_label:
        names:
          0: neg
          1: neut
          2: pos
          3: neg_pos
  splits:
  - name: train
    num_bytes: 458177
    num_examples: 2283
  - name: validation
    num_bytes: 58248
    num_examples: 285
  - name: test
    num_bytes: 56399
    num_examples: 286
  download_size: 477314
  dataset_size: 572824
- config_name: wrete
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: category
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: NotEntail
          1: Entail_or_Paraphrase
  splits:
  - name: train
    num_bytes: 99999
    num_examples: 300
  - name: validation
    num_bytes: 18049
    num_examples: 50
  - name: test
    num_bytes: 32617
    num_examples: 100
  download_size: 151018
  dataset_size: 150665
- config_name: posp
  features:
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          0: B-PPO
          1: B-KUA
          2: B-ADV
          3: B-PRN
          4: B-VBI
          5: B-PAR
          6: B-VBP
          7: B-NNP
          8: B-UNS
          9: B-VBT
          10: B-VBL
          11: B-NNO
          12: B-ADJ
          13: B-PRR
          14: B-PRK
          15: B-CCN
          16: B-$$$
          17: B-ADK
          18: B-ART
          19: B-CSN
          20: B-NUM
          21: B-SYM
          22: B-INT
          23: B-NEG
          24: B-PRI
          25: B-VBE
  splits:
  - name: train
    num_bytes: 2751348
    num_examples: 6720
  - name: validation
    num_bytes: 343924
    num_examples: 840
  - name: test
    num_bytes: 350720
    num_examples: 840
  download_size: 2407206
  dataset_size: 3445992
- config_name: bapos
  features:
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          0: B-PR
          1: B-CD
          2: I-PR
          3: B-SYM
          4: B-JJ
          5: B-DT
          6: I-UH
          7: I-NND
          8: B-SC
          9: I-WH
          10: I-IN
          11: I-NNP
          12: I-VB
          13: B-IN
          14: B-NND
          15: I-CD
          16: I-JJ
          17: I-X
          18: B-OD
          19: B-RP
          20: B-RB
          21: B-NNP
          22: I-RB
          23: I-Z
          24: B-CC
          25: B-NEG
          26: B-VB
          27: B-NN
          28: B-MD
          29: B-UH
          30: I-NN
          31: B-PRP
          32: I-SC
          33: B-Z
          34: I-PRP
          35: I-OD
          36: I-SYM
          37: B-WH
          38: B-FW
          39: I-CC
          40: B-X
  splits:
  - name: train
    num_bytes: 3772459
    num_examples: 8000
  - name: validation
    num_bytes: 460058
    num_examples: 1000
  - name: test
    num_bytes: 474368
    num_examples: 1029
  download_size: 3084021
  dataset_size: 4706885
- config_name: terma
  features:
  - name: tokens
    sequence: string
  - name: seq_label
    sequence:
      class_label:
        names:
          0: I-SENTIMENT
          1: O
          2: I-ASPECT
          3: B-SENTIMENT
          4: B-ASPECT
  splits:
  - name: train
    num_bytes: 817983
    num_examples: 3000
  - name: validation
    num_bytes: 276335
    num_examples: 1000
  - name: test
    num_bytes: 265922
    num_examples: 1000
  download_size: 816822
  dataset_size: 1360240
- config_name: keps
  features:
  - name: tokens
    sequence: string
  - name: seq_label
    sequence:
      class_label:
        names:
          0: O
          1: B
          2: I
  splits:
  - name: train
    num_bytes: 173961
    num_examples: 800
  - name: validation
    num_bytes: 42961
    num_examples: 200
  - name: test
    num_bytes: 66762
    num_examples: 247
  download_size: 134042
  dataset_size: 283684
- config_name: nergrit
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: I-PERSON
          1: B-ORGANISATION
          2: I-ORGANISATION
          3: B-PLACE
          4: I-PLACE
          5: O
          6: B-PERSON
  splits:
  - name: train
    num_bytes: 960710
    num_examples: 1672
  - name: validation
    num_bytes: 119567
    num_examples: 209
  - name: test
    num_bytes: 117274
    num_examples: 209
  download_size: 641265
  dataset_size: 1197551
- config_name: nerp
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: I-PPL
          1: B-EVT
          2: B-PLC
          3: I-IND
          4: B-IND
          5: B-FNB
          6: I-EVT
          7: B-PPL
          8: I-PLC
          9: O
          10: I-FNB
  splits:
  - name: train
    num_bytes: 2751348
    num_examples: 6720
  - name: validation
    num_bytes: 343924
    num_examples: 840
  - name: test
    num_bytes: 350720
    num_examples: 840
  download_size: 1725986
  dataset_size: 3445992
- config_name: facqa
  features:
  - name: question
    sequence: string
  - name: passage
    sequence: string
  - name: seq_label
    sequence:
      class_label:
        names:
          0: O
          1: B
          2: I
  splits:
  - name: train
    num_bytes: 2454368
    num_examples: 2495
  - name: validation
    num_bytes: 306249
    num_examples: 311
  - name: test
    num_bytes: 306831
    num_examples: 311
  download_size: 2591968
  dataset_size: 3067448
---


# Dataset Card for IndoNLU

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [IndoNLU Website](https://www.indobenchmark.com/)
- **Repository:** [IndoNLU GitHub](https://github.com/indobenchmark/indonlu)
- **Paper:** [IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding](https://www.aclweb.org/anthology/2020aacl-main.85.pdf)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

The IndoNLU benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems for Bahasa Indonesia (Indonesian language).
There are 12 datasets in IndoNLU benchmark for Indonesian natural language understanding.
1. `EmoT`: An emotion classification dataset collected from the social media platform Twitter. The dataset consists of around 4000 Indonesian colloquial language tweets, covering five different emotion labels: anger, fear, happy, love, and sadness
2. `SmSA`: This sentence-level sentiment analysis dataset is a collection of comments and reviews in Indonesian obtained from multiple online platforms. The text was crawled and then annotated by several Indonesian linguists to construct this dataset. There are three possible sentiments on the `SmSA` dataset: positive, negative, and neutral
3. `CASA`: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms. The dataset covers six aspects of car quality. We define the task to be a multi-label classification task, where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral.
4. `HoASA`: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, [AiryRooms](https://github.com/annisanurulazhar/absa-playground). The dataset covers ten different aspects of hotel quality. Similar to the `CASA` dataset, each review is labeled with a single sentiment label for each aspect. There are four possible sentiment classes for each sentiment label: positive, negative, neutral, and positive-negative. The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet).
5. `WReTE`: The Wiki Revision Edits Textual Entailment dataset consists of 450 sentence pairs constructed from Wikipedia revision history. The dataset contains pairs of sentences and binary semantic relations between the pairs. The data are labeled as entailed when the meaning of the second sentence can be derived from the first one, and not entailed otherwise.
6. `POSP`: This Indonesian part-of-speech tagging (POS) dataset is collected from Indonesian news websites. The dataset consists of around 8000 sentences with 26 POS tags. The POS tag labels follow the [Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention](http://inacl.id/inacl/wp-content/uploads/2017/06/INACL-POS-Tagging-Convention-26-Mei.pdf).
7. `BaPOS`: This POS tagging dataset contains about 1000 sentences, collected from the [PAN Localization Project](http://www.panl10n.net/). In this dataset, each word is tagged by one of [23 POS tag classes](https://bahasa.cs.ui.ac.id/postag/downloads/Tagset.pdf). Data splitting used in this benchmark follows the experimental setting used by [Kurniawan and Aji (2018)](https://arxiv.org/abs/1809.03391).
8. `TermA`: This span-extraction dataset is collected from the hotel aggregator platform, [AiryRooms](https://github.com/jordhy97/final_project). The dataset consists of thousands of hotel reviews, which each contain a span label for aspect and sentiment words representing the opinion of the reviewer on the corresponding aspect. The labels use Inside-Outside-Beginning (IOB) tagging representation with two kinds of tags, aspect and sentiment.
9. `KEPS`: This keyphrase extraction dataset consists of text from Twitter discussing banking products and services and is written in the Indonesian language. A phrase containing important information is considered a keyphrase. Text may contain one or more keyphrases since important phrases can be located at different positions. The dataset follows the IOB chunking format, which represents the position of the keyphrase.
10. `NERGrit`: This NER dataset is taken from the [Grit-ID repository](https://github.com/grit-id/nergrit-corpus), and the labels are spans in IOB chunking representation. The dataset consists of three kinds of named entity tags, PERSON (name of person), PLACE (name of location), and ORGANIZATION (name of organization).
11. `NERP`: This NER dataset (Hoesen and Purwarianti, 2018) contains texts collected from several Indonesian news websites. There are five labels available in this dataset, PER (name of person), LOC (name of location), IND (name of product or brand), EVT (name of the event), and FNB (name of food and beverage). Similar to the `TermA` dataset, the `NERP` dataset uses the IOB chunking format.
12. `FacQA`: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article. Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the corresponding short passage. There are six categories of questions: date, location, name, organization, person, and quantitative.

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

Indonesian

## Dataset Structure

### Data Instances

1. `EmoT` dataset

A data point consists of `tweet` and `label`. An example from the train set looks as follows:
```
{
  'tweet': 'Ini adalah hal yang paling membahagiakan saat biasku foto bersama ELF #ReturnOfTheLittlePrince #HappyHeeChulDay'
  'label': 4,
}
```

2. `SmSA` dataset

A data point consists of `text` and `label`. An example from the train set looks as follows:
```
{
  'text': 'warung ini dimiliki oleh pengusaha pabrik tahu yang sudah puluhan tahun terkenal membuat tahu putih di bandung . tahu berkualitas , dipadu keahlian memasak , dipadu kretivitas , jadilah warung yang menyajikan menu utama berbahan tahu , ditambah menu umum lain seperti ayam . semuanya selera indonesia . harga cukup terjangkau . jangan lewatkan tahu bletoka nya , tidak kalah dengan yang asli dari tegal !'
  'label': 0,
}
```

3. `CASA` dataset

A data point consists of `sentence` and multi-label `feature`, `machine`, `others`, `part`, `price`, and `service`. An example from the train set looks as follows:
```
{
  'sentence': 'Saya memakai Honda Jazz GK5 tahun 2014 ( pertama meluncur ) . Mobil nya bagus dan enak sesuai moto nya menyenangkan untuk dikendarai',
  'fuel': 1,
  'machine': 1,
  'others': 2,
  'part': 1,
  'price': 1,
  'service': 1
}
```

4. `HoASA` dataset

A data point consists of `sentence` and multi-label `ac`, `air_panas`, `bau`, `general`, `kebersihan`, `linen`, `service`, `sunrise_meal`, `tv`, and `wifi`. An example from the train set looks as follows:
```
{
  'sentence': 'kebersihan kurang...',
  'ac': 1,
  'air_panas': 1,
  'bau': 1,
  'general': 1,
  'kebersihan': 0,
  'linen': 1,
  'service': 1,
  'sunrise_meal': 1,
  'tv': 1,
  'wifi': 1
}
```

5. `WreTE` dataset

A data point consists of `premise`, `hypothesis`, `category`, and `label`. An example from the train set looks as follows:
```
{
  'premise': 'Pada awalnya bangsa Israel hanya terdiri dari satu kelompok keluarga di antara banyak kelompok keluarga yang hidup di tanah Kanan pada abad 18 SM .',
  'hypothesis': 'Pada awalnya bangsa Yahudi hanya terdiri dari satu kelompok keluarga di antara banyak kelompok keluarga yang hidup di tanah Kanan pada abad 18 SM .'
  'category': 'menolak perubahan teks terakhir oleh istimewa kontribusi pengguna 141 109 98 87 141 109 98 87 dan mengembalikan revisi 6958053 oleh johnthorne',
  'label': 0,
}
```

6. `POSP` dataset

A data point consists of `tokens` and `pos_tags`. An example from the train set looks as follows:
```
{
  'tokens': ['kepala', 'dinas', 'tata', 'kota', 'manado', 'amos', 'kenda', 'menyatakan', 'tidak', 'tahu', '-', 'menahu', 'soal', 'pencabutan', 'baliho', '.', 'ia', 'enggan', 'berkomentar', 'banyak', 'karena', 'merasa', 'bukan', 'kewenangannya', '.'],
  'pos_tags': [11, 6, 11, 11, 7, 7, 7, 9, 23, 4, 21, 9, 11, 11, 11, 21, 3, 2, 4, 1, 19, 9, 23, 11, 21]
}
```

7. `BaPOS` dataset

A data point consists of `tokens` and `pos_tags`. An example from the train set looks as follows:
```
{
  'tokens': ['Kera', 'untuk', 'amankan', 'pesta', 'olahraga'],
  'pos_tags': [27, 8, 26, 27, 30]
}
```

8. `TermA` dataset

A data point consists of `tokens` and `seq_label`. An example from the train set looks as follows:
```
{
  'tokens': ['kamar', 'saya', 'ada', 'kendala', 'di', 'ac', 'tidak', 'berfungsi', 'optimal', '.', 'dan', 'juga', 'wifi', 'koneksi', 'kurang', 'stabil', '.'],
  'seq_label': [1, 1, 1, 1, 1, 4, 3, 0, 0, 1, 1, 1, 4, 2, 3, 0, 1]
}
```

9. `KEPS` dataset

A data point consists of `tokens` and `seq_label`. An example from the train set looks as follows:
```
{
  'tokens': ['Setelah', 'melalui', 'proses', 'telepon', 'yang', 'panjang', 'tutup', 'sudah', 'kartu', 'kredit', 'bca', 'Ribet'],
  'seq_label': [0, 1, 1, 2, 0, 0, 1, 0, 1, 2, 2, 1]
}
```

10. `NERGrit` dataset

A data point consists of `tokens` and `ner_tags`. An example from the train set looks as follows:
```
{
  'tokens': ['Kontribusinya', 'terhadap', 'industri', 'musik', 'telah', 'mengumpulkan', 'banyak', 'prestasi', 'termasuk', 'lima', 'Grammy', 'Awards', ',', 'serta', 'dua', 'belas', 'nominasi', ';', 'dua', 'Guinness', 'World', 'Records', ';', 'dan', 'penjualannya', 'diperkirakan', 'sekitar', '64', 'juta', 'rekaman', '.'],
  'ner_tags': [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]}
```

11. `NERP` dataset

A data point consists of `tokens` and `ner_tags`. An example from the train set looks as follows:
```
{
  'tokens': ['kepala', 'dinas', 'tata', 'kota', 'manado', 'amos', 'kenda', 'menyatakan', 'tidak', 'tahu', '-', 'menahu', 'soal', 'pencabutan', 'baliho', '.', 'ia', 'enggan', 'berkomentar', 'banyak', 'karena', 'merasa', 'bukan', 'kewenangannya', '.'],
  'ner_tags': [9, 9, 9, 9, 2, 7, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
}
```

12. `FacQA` dataset

A data point consists of `question`, `passage`, and `seq_label`. An example from the train set looks as follows:
```
{
  'passage': ['Lewat', 'telepon', 'ke', 'kantor', 'berita', 'lokal', 'Current', 'News', 'Service', ',', 'Hezb-ul', 'Mujahedeen', ',', 'kelompok', 'militan', 'Kashmir', 'yang', 'terbesar', ',', 'menyatakan', 'bertanggung', 'jawab', 'atas', 'ledakan', 'di', 'Srinagar', '.'],
  'question': ['Kelompok', 'apakah', 'yang', 'menyatakan', 'bertanggung', 'jawab', 'atas', 'ledakan', 'di', 'Srinagar', '?'],
  'seq_label': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```

### Data Fields

1. `EmoT` dataset

- `tweet`: a `string` feature.
- `label`: an emotion label, with possible values including `sadness`, `anger`, `love`, `fear`, `happy`.

2. `SmSA` dataset

- `text`: a `string` feature.
- `label`: a sentiment label, with possible values including `positive`, `neutral`, `negative`.

3. `CASA` dataset

- `sentence`: a `string` feature.
- `fuel`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `machine`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `others`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `part`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `price`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `service`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.

4. `HoASA` dataset

- `sentence`: a `string` feature.
- `ac`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `air_panas`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `bau`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `general`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `kebersihan`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `linen`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `service`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `sunrise_meal`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `tv`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `wifi`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.

5. `WReTE` dataset

- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `category`: a `string` feature.
- `label`: a classification label, with possible values including `NotEntail`, `Entail_or_Paraphrase`.

6. `POSP` dataset

- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of POS tag labels, with possible values including `B-PPO`, `B-KUA`, `B-ADV`, `B-PRN`, `B-VBI`.

The POS tag labels follow the [Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention](http://inacl.id/inacl/wp-content/uploads/2017/06/INACLPOS-Tagging-Convention-26-Mei.pdf).

7. `BaPOS` dataset

- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of POS tag labels, with possible values including `B-PR`, `B-CD`, `I-PR`, `B-SYM`, `B-JJ`.

The POS tag labels from [Tagset UI](https://bahasa.cs.ui.ac.id/postag/downloads/Tagset.pdf).

8. `TermA` dataset

- `tokens`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `I-SENTIMENT`, `O`, `I-ASPECT`, `B-SENTIMENT`, `B-ASPECT`.

9. `KEPS` dataset

- `tokens`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `O`, `B`, `I`.

The labels use Inside-Outside-Beginning (IOB) tagging.

10. `NERGrit` dataset

- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of NER tag labels, with possible values including `I-PERSON`, `B-ORGANISATION`, `I-ORGANISATION`, `B-PLACE`, `I-PLACE`.

The labels use Inside-Outside-Beginning (IOB) tagging.

11. `NERP` dataset

- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of NER tag labels, with possible values including `I-PPL`, `B-EVT`, `B-PLC`, `I-IND`, `B-IND`.

12. `FacQA` dataset

- `question`: a `list` of `string` features.
- `passage`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `O`, `B`, `I`.

### Data Splits

The data is split into a training, validation and test set.

|    | dataset | Train | Valid | Test |
|----|---------|-------|-------|------|
| 1  | EmoT    | 3521  | 440   | 440  |
| 2  | SmSA    | 11000 | 1260  | 500  |
| 3  | CASA    | 810   | 90    | 180  |
| 4  | HoASA   | 2283  | 285   | 286  |
| 5  | WReTE   | 300   | 50    | 100  |
| 6  | POSP    | 6720  | 840   | 840  |
| 7  | BaPOS   | 8000  | 1000  | 1029 |
| 8  | TermA   | 3000  | 1000  | 1000 |
| 9  | KEPS    | 800   | 200   | 247  |
| 10 | NERGrit | 1672  | 209   | 209  |
| 11 | NERP    | 6720  | 840   | 840  |
| 12 | FacQA   | 2495  | 311   | 311  |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

The licensing status of the IndoNLU benchmark datasets is under MIT License.

### Citation Information

IndoNLU citation
```
@inproceedings{wilie2020indonlu,
  title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
  author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
  booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
  year={2020}
}
```

`EmoT` dataset citation
```
@inproceedings{saputri2018emotion,
  title={Emotion Classification on Indonesian Twitter Dataset},
  author={Mei Silviana Saputri, Rahmad Mahendra, and Mirna Adriani},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing(IALP)},
  pages={90--95},
  year={2018},
  organization={IEEE}
}
```

`SmSA` dataset citation
```
@inproceedings{purwarianti2019improving,
  title={Improving Bi-LSTM Performance for Indonesian Sentiment Analysis Using Paragraph Vector},
  author={Ayu Purwarianti and Ida Ayu Putu Ari Crisdayanti},
  booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
  pages={1--5},
  year={2019},
  organization={IEEE}
}
```

`CASA` dataset citation
```
@inproceedings{ilmania2018aspect,
  title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-based Sentiment Analysis},
  author={Arfinda Ilmania, Abdurrahman, Samuel Cahyawijaya, Ayu Purwarianti},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing(IALP)},
  pages={62--67},
  year={2018},
  organization={IEEE}
}
```

`HoASA` dataset citation
```
@inproceedings{azhar2019multi,
  title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting},
  author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono}
  booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)},
  pages={35--40},
  year={2019}
}
```

`WReTE` dataset citation
```
@inproceedings{setya2018semi,
  title={Semi-supervised Textual Entailment on Indonesian Wikipedia Data},
  author={Ken Nabila Setya and Rahmad Mahendra},
  booktitle={Proceedings of the 2018 International Conference on Computational Linguistics and Intelligent Text Processing (CICLing)},
  year={2018}
}
```

`POSP` dataset citation
```
@inproceedings{hoesen2018investigating,
  title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
  author={Devin Hoesen and Ayu Purwarianti},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
  pages={35--38},
  year={2018},
  organization={IEEE}
}
```

`BaPOS` dataset citation
```
@inproceedings{dinakaramani2014designing,
  title={Designing an Indonesian Part of Speech Tagset and Manually Tagged Indonesian Corpus},
  author={Arawinda Dinakaramani, Fam Rashel, Andry Luthfi, and Ruli Manurung},
  booktitle={Proceedings of the 2014 International Conference on Asian Language Processing (IALP)},
  pages={66--69},
  year={2014},
  organization={IEEE}
}
@inproceedings{kurniawan2018toward,
  title={Toward a Standardized and More Accurate Indonesian Part-of-Speech Tagging},
  author={Kemal Kurniawan and Alham Fikri Aji},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
  pages={303--307},
  year={2018},
  organization={IEEE}
}
```

`TermA` dataset citation
```
@article{winatmoko2019aspect,
  title={Aspect and Opinion Term Extraction for Hotel Reviews Using Transfer Learning and Auxiliary Labels},
  author={Yosef Ardhito Winatmoko, Ali Akbar Septiandri, Arie Pratama Sutiono},
  journal={arXiv preprint arXiv:1909.11879},
  year={2019}
}
@article{fernando2019aspect,
  title={Aspect and Opinion Terms Extraction Using Double Embeddings and Attention Mechanism for Indonesian Hotel Reviews},
  author={Jordhy Fernando, Masayu Leylia Khodra, Ali Akbar Septiandri},
  journal={arXiv preprint arXiv:1908.04899},
  year={2019}
}
```

`KEPS` dataset citation
```
@inproceedings{mahfuzh2019improving,
  title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
  author={Miftahul Mahfuzh, Sidik Soleman, and Ayu Purwarianti},
  booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
  pages={1--6},
  year={2019},
  organization={IEEE}
}
```

`NERGrit` dataset citation
```
@online{nergrit2019,
  title={NERGrit Corpus},
  author={NERGrit Developers},
  year={2019},
  url={https://github.com/grit-id/nergrit-corpus}
}
```

`NERP` dataset citation
```
@inproceedings{hoesen2018investigating,
  title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
  author={Devin Hoesen and Ayu Purwarianti},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
  pages={35--38},
  year={2018},
  organization={IEEE}
}
```

`FacQA` dataset citation
```
@inproceedings{purwarianti2007machine,
  title={A Machine Learning Approach for Indonesian Question Answering System},
  author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa},
  booktitle={Proceedings of Artificial Intelligence and Applications },
  pages={573--578},
  year={2007}
}
```

### Contributions

Thanks to [@yasirabd](https://github.com/yasirabd) for adding this dataset.