Datasets:
File size: 24,352 Bytes
94fb979 bb7778d 94fb979 bb7778d 94fb979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- id
licenses:
- mit
multilinguality:
- monolingual
size_categories:
bapos:
- 10K<n<100K
casa:
- 1K<n<10K
emot:
- 1K<n<10K
facqa:
- 1K<n<10K
hoasa:
- n<1K
keps:
- 1K<n<10K
nergrit:
- 1K<n<10K
nerp:
- 1K<n<10K
posp:
- 1K<n<10K
smsa:
- 10K<n<100K
terma:
- 1K<n<10K
wrete:
- n<1K
source_datasets:
- original
task_categories:
bapos:
- structure-prediction
casa:
- text-classification
emot:
- text-classification
facqa:
- question-answering
hoasa:
- text-classification
keps:
- structure-prediction
nergrit:
- structure-prediction
nerp:
- structure-prediction
posp:
- structure-prediction
smsa:
- text-classification
terma:
- structure-prediction
wrete:
- text-classification
task_ids:
bapos:
- part-of-speech-tagging
casa:
- text-classification-other-aspect-based-sentiment-analysis
emot:
- multi-class-classification
facqa:
- closed-domain-qa
hoasa:
- text-classification-other-aspect-based-sentiment-analysis
keps:
- structure-prediction-other-keyphrase-extraction
nergrit:
- named-entity-recognition
nerp:
- named-entity-recognition
posp:
- part-of-speech-tagging
smsa:
- sentiment-classification
terma:
- structure-prediction-other-span-extraction
wrete:
- semantic-similarity-classification
---
# Dataset Card for IndoNLU
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [IndoNLU Website](https://www.indobenchmark.com/)
- **Repository:** [IndoNLU GitHub](https://github.com/indobenchmark/indonlu)
- **Paper:** [IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding](https://www.aclweb.org/anthology/2020aacl-main.85.pdf)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
The IndoNLU benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems for Bahasa Indonesia (Indonesian language).
There are 12 datasets in IndoNLU benchmark for Indonesian natural language understanding.
1. `EmoT`: An emotion classification dataset collected from the social media platform Twitter. The dataset consists of around 4000 Indonesian colloquial language tweets, covering five different emotion labels: anger, fear, happy, love, and sadness
2. `SmSA`: This sentence-level sentiment analysis dataset is a collection of comments and reviews in Indonesian obtained from multiple online platforms. The text was crawled and then annotated by several Indonesian linguists to construct this dataset. There are three possible sentiments on the `SmSA` dataset: positive, negative, and neutral
3. `CASA`: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms. The dataset covers six aspects of car quality. We define the task to be a multi-label classification task, where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral.
4. `HoASA`: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, [AiryRooms](https://github.com/annisanurulazhar/absa-playground). The dataset covers ten different aspects of hotel quality. Similar to the `CASA` dataset, each review is labeled with a single sentiment label for each aspect. There are four possible sentiment classes for each sentiment label: positive, negative, neutral, and positive-negative. The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet).
5. `WReTE`: The Wiki Revision Edits Textual Entailment dataset consists of 450 sentence pairs constructed from Wikipedia revision history. The dataset contains pairs of sentences and binary semantic relations between the pairs. The data are labeled as entailed when the meaning of the second sentence can be derived from the first one, and not entailed otherwise.
6. `POSP`: This Indonesian part-of-speech tagging (POS) dataset is collected from Indonesian news websites. The dataset consists of around 8000 sentences with 26 POS tags. The POS tag labels follow the [Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention](http://inacl.id/inacl/wp-content/uploads/2017/06/INACL-POS-Tagging-Convention-26-Mei.pdf).
7. `BaPOS`: This POS tagging dataset contains about 1000 sentences, collected from the [PAN Localization Project](http://www.panl10n.net/). In this dataset, each word is tagged by one of [23 POS tag classes](https://bahasa.cs.ui.ac.id/postag/downloads/Tagset.pdf). Data splitting used in this benchmark follows the experimental setting used by [Kurniawan and Aji (2018)](https://arxiv.org/abs/1809.03391).
8. `TermA`: This span-extraction dataset is collected from the hotel aggregator platform, [AiryRooms](https://github.com/jordhy97/final_project). The dataset consists of thousands of hotel reviews, which each contain a span label for aspect and sentiment words representing the opinion of the reviewer on the corresponding aspect. The labels use Inside-Outside-Beginning (IOB) tagging representation with two kinds of tags, aspect and sentiment.
9. `KEPS`: This keyphrase extraction dataset consists of text from Twitter discussing banking products and services and is written in the Indonesian language. A phrase containing important information is considered a keyphrase. Text may contain one or more keyphrases since important phrases can be located at different positions. The dataset follows the IOB chunking format, which represents the position of the keyphrase.
10. `NERGrit`: This NER dataset is taken from the [Grit-ID repository](https://github.com/grit-id/nergrit-corpus), and the labels are spans in IOB chunking representation. The dataset consists of three kinds of named entity tags, PERSON (name of person), PLACE (name of location), and ORGANIZATION (name of organization).
11. `NERP`: This NER dataset (Hoesen and Purwarianti, 2018) contains texts collected from several Indonesian news websites. There are five labels available in this dataset, PER (name of person), LOC (name of location), IND (name of product or brand), EVT (name of the event), and FNB (name of food and beverage). Similar to the `TermA` dataset, the `NERP` dataset uses the IOB chunking format.
12. `FacQA`: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article. Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the corresponding short passage. There are six categories of questions: date, location, name, organization, person, and quantitative.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Indonesian
## Dataset Structure
### Data Instances
1. `EmoT` dataset
A data point consists of `tweet` and `label`. An example from the train set looks as follows:
```
{
'tweet': 'Ini adalah hal yang paling membahagiakan saat biasku foto bersama ELF #ReturnOfTheLittlePrince #HappyHeeChulDay'
'label': 4,
}
```
2. `SmSA` dataset
A data point consists of `text` and `label`. An example from the train set looks as follows:
```
{
'text': 'warung ini dimiliki oleh pengusaha pabrik tahu yang sudah puluhan tahun terkenal membuat tahu putih di bandung . tahu berkualitas , dipadu keahlian memasak , dipadu kretivitas , jadilah warung yang menyajikan menu utama berbahan tahu , ditambah menu umum lain seperti ayam . semuanya selera indonesia . harga cukup terjangkau . jangan lewatkan tahu bletoka nya , tidak kalah dengan yang asli dari tegal !'
'label': 0,
}
```
3. `CASA` dataset
A data point consists of `sentence` and multi-label `feature`, `machine`, `others`, `part`, `price`, and `service`. An example from the train set looks as follows:
```
{
'sentence': 'Saya memakai Honda Jazz GK5 tahun 2014 ( pertama meluncur ) . Mobil nya bagus dan enak sesuai moto nya menyenangkan untuk dikendarai',
'fuel': 1,
'machine': 1,
'others': 2,
'part': 1,
'price': 1,
'service': 1
}
```
4. `HoASA` dataset
A data point consists of `sentence` and multi-label `ac`, `air_panas`, `bau`, `general`, `kebersihan`, `linen`, `service`, `sunrise_meal`, `tv`, and `wifi`. An example from the train set looks as follows:
```
{
'sentence': 'kebersihan kurang...',
'ac': 1,
'air_panas': 1,
'bau': 1,
'general': 1,
'kebersihan': 0,
'linen': 1,
'service': 1,
'sunrise_meal': 1,
'tv': 1,
'wifi': 1
}
```
5. `WreTE` dataset
A data point consists of `premise`, `hypothesis`, `category`, and `label`. An example from the train set looks as follows:
```
{
'premise': 'Pada awalnya bangsa Israel hanya terdiri dari satu kelompok keluarga di antara banyak kelompok keluarga yang hidup di tanah Kanan pada abad 18 SM .',
'hypothesis': 'Pada awalnya bangsa Yahudi hanya terdiri dari satu kelompok keluarga di antara banyak kelompok keluarga yang hidup di tanah Kanan pada abad 18 SM .'
'category': 'menolak perubahan teks terakhir oleh istimewa kontribusi pengguna 141 109 98 87 141 109 98 87 dan mengembalikan revisi 6958053 oleh johnthorne',
'label': 0,
}
```
6. `POSP` dataset
A data point consists of `tokens` and `pos_tags`. An example from the train set looks as follows:
```
{
'tokens': ['kepala', 'dinas', 'tata', 'kota', 'manado', 'amos', 'kenda', 'menyatakan', 'tidak', 'tahu', '-', 'menahu', 'soal', 'pencabutan', 'baliho', '.', 'ia', 'enggan', 'berkomentar', 'banyak', 'karena', 'merasa', 'bukan', 'kewenangannya', '.'],
'pos_tags': [11, 6, 11, 11, 7, 7, 7, 9, 23, 4, 21, 9, 11, 11, 11, 21, 3, 2, 4, 1, 19, 9, 23, 11, 21]
}
```
7. `BaPOS` dataset
A data point consists of `tokens` and `pos_tags`. An example from the train set looks as follows:
```
{
'tokens': ['Kera', 'untuk', 'amankan', 'pesta', 'olahraga'],
'pos_tags': [27, 8, 26, 27, 30]
}
```
8. `TermA` dataset
A data point consists of `tokens` and `seq_label`. An example from the train set looks as follows:
```
{
'tokens': ['kamar', 'saya', 'ada', 'kendala', 'di', 'ac', 'tidak', 'berfungsi', 'optimal', '.', 'dan', 'juga', 'wifi', 'koneksi', 'kurang', 'stabil', '.'],
'seq_label': [1, 1, 1, 1, 1, 4, 3, 0, 0, 1, 1, 1, 4, 2, 3, 0, 1]
}
```
9. `KEPS` dataset
A data point consists of `tokens` and `seq_label`. An example from the train set looks as follows:
```
{
'tokens': ['Setelah', 'melalui', 'proses', 'telepon', 'yang', 'panjang', 'tutup', 'sudah', 'kartu', 'kredit', 'bca', 'Ribet'],
'seq_label': [0, 1, 1, 2, 0, 0, 1, 0, 1, 2, 2, 1]
}
```
10. `NERGrit` dataset
A data point consists of `tokens` and `ner_tags`. An example from the train set looks as follows:
```
{
'tokens': ['Kontribusinya', 'terhadap', 'industri', 'musik', 'telah', 'mengumpulkan', 'banyak', 'prestasi', 'termasuk', 'lima', 'Grammy', 'Awards', ',', 'serta', 'dua', 'belas', 'nominasi', ';', 'dua', 'Guinness', 'World', 'Records', ';', 'dan', 'penjualannya', 'diperkirakan', 'sekitar', '64', 'juta', 'rekaman', '.'],
'ner_tags': [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]}
```
11. `NERP` dataset
A data point consists of `tokens` and `ner_tags`. An example from the train set looks as follows:
```
{
'tokens': ['kepala', 'dinas', 'tata', 'kota', 'manado', 'amos', 'kenda', 'menyatakan', 'tidak', 'tahu', '-', 'menahu', 'soal', 'pencabutan', 'baliho', '.', 'ia', 'enggan', 'berkomentar', 'banyak', 'karena', 'merasa', 'bukan', 'kewenangannya', '.'],
'ner_tags': [9, 9, 9, 9, 2, 7, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
}
```
12. `FacQA` dataset
A data point consists of `question`, `passage`, and `seq_label`. An example from the train set looks as follows:
```
{
'passage': ['Lewat', 'telepon', 'ke', 'kantor', 'berita', 'lokal', 'Current', 'News', 'Service', ',', 'Hezb-ul', 'Mujahedeen', ',', 'kelompok', 'militan', 'Kashmir', 'yang', 'terbesar', ',', 'menyatakan', 'bertanggung', 'jawab', 'atas', 'ledakan', 'di', 'Srinagar', '.'],
'question': ['Kelompok', 'apakah', 'yang', 'menyatakan', 'bertanggung', 'jawab', 'atas', 'ledakan', 'di', 'Srinagar', '?'],
'seq_label': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```
### Data Fields
1. `EmoT` dataset
- `tweet`: a `string` feature.
- `label`: an emotion label, with possible values including `sadness`, `anger`, `love`, `fear`, `happy`.
2. `SmSA` dataset
- `text`: a `string` feature.
- `label`: a sentiment label, with possible values including `positive`, `neutral`, `negative`.
3. `CASA` dataset
- `sentence`: a `string` feature.
- `fuel`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `machine`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `others`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `part`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `price`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
- `service`: a sentiment label, with possible values including `negative`, `neutral`, `positive`.
4. `HoASA` dataset
- `sentence`: a `string` feature.
- `ac`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `air_panas`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `bau`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `general`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `kebersihan`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `linen`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `service`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `sunrise_meal`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `tv`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
- `wifi`: a sentiment label, with possible values including `neg`, `neut`, `pos`, `neg_pos`.
5. `WReTE` dataset
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `category`: a `string` feature.
- `label`: a classification label, with possible values including `NotEntail`, `Entail_or_Paraphrase`.
6. `POSP` dataset
- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of POS tag labels, with possible values including `B-PPO`, `B-KUA`, `B-ADV`, `B-PRN`, `B-VBI`.
The POS tag labels follow the [Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention](http://inacl.id/inacl/wp-content/uploads/2017/06/INACLPOS-Tagging-Convention-26-Mei.pdf).
7. `BaPOS` dataset
- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of POS tag labels, with possible values including `B-PR`, `B-CD`, `I-PR`, `B-SYM`, `B-JJ`.
The POS tag labels from [Tagset UI](https://bahasa.cs.ui.ac.id/postag/downloads/Tagset.pdf).
8. `TermA` dataset
- `tokens`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `I-SENTIMENT`, `O`, `I-ASPECT`, `B-SENTIMENT`, `B-ASPECT`.
9. `KEPS` dataset
- `tokens`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `O`, `B`, `I`.
The labels use Inside-Outside-Beginning (IOB) tagging.
10. `NERGrit` dataset
- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of NER tag labels, with possible values including `I-PERSON`, `B-ORGANISATION`, `I-ORGANISATION`, `B-PLACE`, `I-PLACE`.
The labels use Inside-Outside-Beginning (IOB) tagging.
11. `NERP` dataset
- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of NER tag labels, with possible values including `I-PPL`, `B-EVT`, `B-PLC`, `I-IND`, `B-IND`.
12. `FacQA` dataset
- `question`: a `list` of `string` features.
- `passage`: a `list` of `string` features.
- `seq_label`: a `list` of classification labels, with possible values including `O`, `B`, `I`.
### Data Splits
The data is split into a training, validation and test set.
| | dataset | Train | Valid | Test |
|----|---------|-------|-------|------|
| 1 | EmoT | 3521 | 440 | 440 |
| 2 | SmSA | 11000 | 1260 | 500 |
| 3 | CASA | 810 | 90 | 180 |
| 4 | HoASA | 2283 | 285 | 286 |
| 5 | WReTE | 300 | 50 | 100 |
| 6 | POSP | 6720 | 840 | 840 |
| 7 | BaPOS | 8000 | 1000 | 1029 |
| 8 | TermA | 3000 | 1000 | 1000 |
| 9 | KEPS | 800 | 200 | 247 |
| 10 | NERGrit | 1672 | 209 | 209 |
| 11 | NERP | 6720 | 840 | 840 |
| 12 | FacQA | 2495 | 311 | 311 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
The licensing status of the IndoNLU benchmark datasets is under MIT License.
### Citation Information
IndoNLU citation
```
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
year={2020}
}
```
`EmoT` dataset citation
```
@inproceedings{saputri2018emotion,
title={Emotion Classification on Indonesian Twitter Dataset},
author={Mei Silviana Saputri, Rahmad Mahendra, and Mirna Adriani},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing(IALP)},
pages={90--95},
year={2018},
organization={IEEE}
}
```
`SmSA` dataset citation
```
@inproceedings{purwarianti2019improving,
title={Improving Bi-LSTM Performance for Indonesian Sentiment Analysis Using Paragraph Vector},
author={Ayu Purwarianti and Ida Ayu Putu Ari Crisdayanti},
booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
pages={1--5},
year={2019},
organization={IEEE}
}
```
`CASA` dataset citation
```
@inproceedings{ilmania2018aspect,
title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-based Sentiment Analysis},
author={Arfinda Ilmania, Abdurrahman, Samuel Cahyawijaya, Ayu Purwarianti},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing(IALP)},
pages={62--67},
year={2018},
organization={IEEE}
}
```
`HoASA` dataset citation
```
@inproceedings{azhar2019multi,
title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting},
author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono}
booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)},
pages={35--40},
year={2019}
}
```
`WReTE` dataset citation
```
@inproceedings{setya2018semi,
title={Semi-supervised Textual Entailment on Indonesian Wikipedia Data},
author={Ken Nabila Setya and Rahmad Mahendra},
booktitle={Proceedings of the 2018 International Conference on Computational Linguistics and Intelligent Text Processing (CICLing)},
year={2018}
}
```
`POSP` dataset citation
```
@inproceedings{hoesen2018investigating,
title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
author={Devin Hoesen and Ayu Purwarianti},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
pages={35--38},
year={2018},
organization={IEEE}
}
```
`BaPOS` dataset citation
```
@inproceedings{dinakaramani2014designing,
title={Designing an Indonesian Part of Speech Tagset and Manually Tagged Indonesian Corpus},
author={Arawinda Dinakaramani, Fam Rashel, Andry Luthfi, and Ruli Manurung},
booktitle={Proceedings of the 2014 International Conference on Asian Language Processing (IALP)},
pages={66--69},
year={2014},
organization={IEEE}
}
@inproceedings{kurniawan2018toward,
title={Toward a Standardized and More Accurate Indonesian Part-of-Speech Tagging},
author={Kemal Kurniawan and Alham Fikri Aji},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
pages={303--307},
year={2018},
organization={IEEE}
}
```
`TermA` dataset citation
```
@article{winatmoko2019aspect,
title={Aspect and Opinion Term Extraction for Hotel Reviews Using Transfer Learning and Auxiliary Labels},
author={Yosef Ardhito Winatmoko, Ali Akbar Septiandri, Arie Pratama Sutiono},
journal={arXiv preprint arXiv:1909.11879},
year={2019}
}
@article{fernando2019aspect,
title={Aspect and Opinion Terms Extraction Using Double Embeddings and Attention Mechanism for Indonesian Hotel Reviews},
author={Jordhy Fernando, Masayu Leylia Khodra, Ali Akbar Septiandri},
journal={arXiv preprint arXiv:1908.04899},
year={2019}
}
```
`KEPS` dataset citation
```
@inproceedings{mahfuzh2019improving,
title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
author={Miftahul Mahfuzh, Sidik Soleman, and Ayu Purwarianti},
booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
pages={1--6},
year={2019},
organization={IEEE}
}
```
`NERGrit` dataset citation
```
@online{nergrit2019,
title={NERGrit Corpus},
author={NERGrit Developers},
year={2019},
url={https://github.com/grit-id/nergrit-corpus}
}
```
`NERP` dataset citation
```
@inproceedings{hoesen2018investigating,
title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
author={Devin Hoesen and Ayu Purwarianti},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
pages={35--38},
year={2018},
organization={IEEE}
}
```
`FacQA` dataset citation
```
@inproceedings{purwarianti2007machine,
title={A Machine Learning Approach for Indonesian Question Answering System},
author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa},
booktitle={Proceedings of Artificial Intelligence and Applications },
pages={573--578},
year={2007}
}
``` |