Dataset Preview
Go to dataset viewer
The dataset preview is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    AttributeError
Message:      '_Stream' object has no attribute 'seekable'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/first_rows.py", line 571, in compute_first_rows_response
                  rows = get_rows(
                File "/src/services/worker/src/worker/job_runners/first_rows.py", line 162, in decorator
                  return func(*args, **kwargs)
                File "/src/services/worker/src/worker/job_runners/first_rows.py", line 218, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 937, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 113, in __iter__
                  yield from self.generate_examples_fn(**self.kwargs)
                File "/tmp/modules-cache/datasets_modules/datasets/indic_glue/71a65fbcee7f4f61cfdca67aa4799d161914492f2c380020a7648ea4a7aac385/indic_glue.py", line 923, in _generate_examples
                  df = pd.read_csv(f, names=["label", "text"])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/streaming.py", line 70, in wrapper
                  return function(*args, use_auth_token=use_auth_token, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 771, in xpandas_read_csv
                  return pd.read_csv(filepath_or_buffer, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/util/_decorators.py", line 211, in wrapper
                  return func(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/util/_decorators.py", line 331, in wrapper
                  return func(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 950, in read_csv
                  return _read(filepath_or_buffer, kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 605, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1442, in __init__
                  self._engine = self._make_engine(f, self.engine)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1735, in _make_engine
                  self.handles = get_handle(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/common.py", line 887, in get_handle
                  handle = TextIOWrapper(
                File "/usr/local/lib/python3.9/tarfile.py", line 640, in seekable
                  return self.fileobj.seekable()
              AttributeError: '_Stream' object has no attribute 'seekable'

Need help to make the dataset viewer work? Open an discussion for direct support.

Dataset Card for "indic_glue"

Dataset Summary

IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.

The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, we construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. We call converted dataset WNLI (Winograd NLI). This dataset is translated and publicly released for 3 Indian languages by AI4Bharat.

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

actsa-sc.te

  • Size of downloaded dataset files: 0.36 MB
  • Size of the generated dataset: 1.63 MB
  • Total amount of disk used: 1.99 MB

An example of 'validation' looks as follows.

This example was too long and was cropped:

{
    "label": 0,
    "text": "\"ప్రయాణాల్లో ఉన్నవారికోసం బస్ స్టేషన్లు, రైల్వే స్టేషన్లలో పల్స్పోలియో బూతులను ఏర్పాటు చేసి చిన్నారులకు పోలియో చుక్కలు వేసేలా ఏర..."
}

bbca.hi

  • Size of downloaded dataset files: 5.50 MB
  • Size of the generated dataset: 26.35 MB
  • Total amount of disk used: 31.85 MB

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "label": "pakistan",
    "text": "\"नेटिजन यानि इंटरनेट पर सक्रिय नागरिक अब ट्विटर पर सरकार द्वारा लगाए प्रतिबंधों के समर्थन या विरोध में अपने विचार व्यक्त करते है..."
}

copa.en

  • Size of downloaded dataset files: 0.72 MB
  • Size of the generated dataset: 0.11 MB
  • Total amount of disk used: 0.83 MB

An example of 'validation' looks as follows.

{
    "choice1": "I swept the floor in the unoccupied room.",
    "choice2": "I shut off the light in the unoccupied room.",
    "label": 1,
    "premise": "I wanted to conserve energy.",
    "question": "effect"
}

copa.gu

  • Size of downloaded dataset files: 0.72 MB
  • Size of the generated dataset: 0.22 MB
  • Total amount of disk used: 0.94 MB

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "choice1": "\"સ્ત્રી જાણતી હતી કે તેનો મિત્ર મુશ્કેલ સમયમાંથી પસાર થઈ રહ્યો છે.\"...",
    "choice2": "\"મહિલાને લાગ્યું કે તેના મિત્રએ તેની દયાળુ લાભ લીધો છે.\"...",
    "label": 0,
    "premise": "મહિલાએ તેના મિત્રની મુશ્કેલ વર્તન સહન કરી.",
    "question": "cause"
}

copa.hi

  • Size of downloaded dataset files: 0.72 MB
  • Size of the generated dataset: 0.22 MB
  • Total amount of disk used: 0.94 MB

An example of 'validation' looks as follows.

{
    "choice1": "मैंने उसका प्रस्ताव ठुकरा दिया।",
    "choice2": "उन्होंने मुझे उत्पाद खरीदने के लिए राजी किया।",
    "label": 0,
    "premise": "मैंने सेल्समैन की पिच पर शक किया।",
    "question": "effect"
}

Data Fields

The data fields are the same among all splits.

actsa-sc.te

  • text: a string feature.
  • label: a classification label, with possible values including positive (0), negative (1).

bbca.hi

  • label: a string feature.
  • text: a string feature.

copa.en

  • premise: a string feature.
  • choice1: a string feature.
  • choice2: a string feature.
  • question: a string feature.
  • label: a int32 feature.

copa.gu

  • premise: a string feature.
  • choice1: a string feature.
  • choice2: a string feature.
  • question: a string feature.
  • label: a int32 feature.

copa.hi

  • premise: a string feature.
  • choice1: a string feature.
  • choice2: a string feature.
  • question: a string feature.
  • label: a int32 feature.

Data Splits

actsa-sc.te

train validation test
actsa-sc.te 4328 541 541

bbca.hi

train test
bbca.hi 3467 866

copa.en

train validation test
copa.en 400 100 500

copa.gu

train validation test
copa.gu 362 88 448

copa.hi

train validation test
copa.hi 362 88 449

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@inproceedings{kakwani-etal-2020-indicnlpsuite,
    title = "{I}ndic{NLPS}uite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for {I}ndian Languages",
    author = "Kakwani, Divyanshu  and
      Kunchukuttan, Anoop  and
      Golla, Satish  and
      N.C., Gokul  and
      Bhattacharyya, Avik  and
      Khapra, Mitesh M.  and
      Kumar, Pratyush",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.findings-emnlp.445",
    doi = "10.18653/v1/2020.findings-emnlp.445",
    pages = "4948--4961",
}

@inproceedings{Levesque2011TheWS,
title={The Winograd Schema Challenge},
author={H. Levesque and E. Davis and L. Morgenstern},
booktitle={KR},
year={2011}
}

Contributions

Thanks to @sumanthd17 for adding this dataset.

Downloads last month
4,997