Datasets:
Tasks:
Summarization
Modalities:
Text
Sub-tasks:
news-articles-summarization
Languages:
Hebrew
Size:
100K - 1M
License:
File size: 2,251 Bytes
0935a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import csv
import os.path
import datasets
from urllib.parse import urlparse
_CITATION = """
"""
_DESCRIPTION = """\
"""
class HebrewNewsConfig(datasets.BuilderConfig):
"""BuilderConfig"""
def __init__(self, **kwargs):
"""BuilderConfig
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(HebrewNewsConfig, self).__init__(**kwargs)
class HebrewNews(datasets.GeneratorBasedBuilder):
"""HebrewNews dataset."""
BUILDER_CONFIGS = [
HebrewNewsConfig(
name="hebrew_news", version=datasets.Version("1.0.0"),
description=f"hebrew news dataset"
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"articleBody": datasets.Value("string"),
"description": datasets.Value("string"),
"headline": datasets.Value("string"),
"title": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = "data/news.tar.gz"
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files},
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
fieldnames = ["articleBody", "description", "headline", "title"]
reader = csv.DictReader(f, delimiter=",", fieldnames=fieldnames)
for idx, row in enumerate(reader):
yield idx, {
"id": idx,
"articleBody": row["articleBody"],
"description": row["description"],
"headline": row["headline"],
"title": row["title"],
}
|