File size: 5,270 Bytes
9a70efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import requests
import time
import zipfile
import glob
from hashlib import md5
import concurrent.futures

base_url = "https://huggingface.co/datasets/imageomics/KABR/resolve/main/KABR"

"""
To extend the dataset, add additional animals and parts ranges to the list and dictionary below.
"""

animals = ["giraffes", "zebras_grevys", "zebras_plains"]

animal_parts_range = {
    "giraffes": ("aa", "ad"),
    "zebras_grevys": ("aa", "am"),
    "zebras_plains": ("aa", "al"),
}

dataset_prefix = "dataset/image/"

# Define the static files that are not dependent on the animals list
static_files = [
    "README.txt",
    "annotation/classes.json",
    "annotation/distribution.xlsx",
    "annotation/train.csv",
    "annotation/val.csv",
    "configs/I3D.yaml",
    "configs/SLOWFAST.yaml",
    "configs/X3D.yaml",
    "dataset/image2video.py",
    "dataset/image2visual.py",
]

def generate_part_files(animal, start, end):
    start_a, start_b = ord(start[0]), ord(start[1])
    end_a, end_b = ord(end[0]), ord(end[1])
    return [
        f"{dataset_prefix}{animal}_part_{chr(a)}{chr(b)}"
        for a in range(start_a, end_a + 1)
        for b in range(start_b, end_b + 1)
    ]

# Generate the part files for each animal
part_files = [
    part
    for animal, (start, end) in animal_parts_range.items()
    for part in generate_part_files(animal, start, end)
]

archive_md5_files = [f"{dataset_prefix}{animal}_md5.txt" for animal in animals]

files = static_files + archive_md5_files + part_files

def progress_bar(iteration, total, message, bar_length=50):
    progress = (iteration / total)
    bar = '=' * int(round(progress * bar_length) - 1)
    spaces = ' ' * (bar_length - len(bar))
    message = f'{message:<100}'
    print(f'[{bar + spaces}] {int(progress * 100)}% {message}', end='\r', flush=True)

    if iteration == total:
        print()

# Directory to save files
save_dir = "KABR_files"

# Loop through each relative file path

print(f"Downloading the Kenyan Animal Behavior Recognition (KABR) dataset ...")

total = len(files)
for i, file_path in enumerate(files):
    # Construct the full URL
    save_path = os.path.join(save_dir, file_path)
    
    if os.path.exists(save_path):
        print(f"File {save_path} already exists. Skipping download.")
        continue 
    
    full_url = f"{base_url}/{file_path}"
    
    # Create the necessary directories based on the file path
    os.makedirs(os.path.join(save_dir, os.path.dirname(file_path)), exist_ok=True)
    
    # Download the file and save it with the preserved file path
    response = requests.get(full_url)
    with open(save_path, 'wb') as file:
        file.write(response.content)
    
    progress_bar(i+1, total, f"downloaded: {save_path}")
    
print("Download of repository contents completed.")

print(f"Concatenating split files into a full archive for {animals} ...")

def concatenate_files(animal):
    print(f"Concatenating files for {animal} ...")
    part_files_pattern = f"{save_dir}/dataset/image/{animal}_part_*"
    part_files = sorted(glob.glob(part_files_pattern))
    if part_files:
        with open(f"{save_dir}/dataset/image/{animal}.zip", 'wb') as f_out:
            for f_name in part_files:
                with open(f_name, 'rb') as f_in:
                    # Read and write in chunks
                    CHUNK_SIZE = 8*1024*1024 # 8MB
                    for chunk in iter(lambda: f_in.read(CHUNK_SIZE), b""):
                        f_out.write(chunk) 
                # Delete part files as they are concatenated              
                os.remove(f_name)
        print(f"Archive for {animal} concatenated.")
    else:
        print(f"No part files found for {animal}.")

with concurrent.futures.ThreadPoolExecutor() as executor:
    executor.map(concatenate_files, animals)

def compute_md5(file_path):
    hasher = md5()
    with open(file_path, 'rb') as f:
        CHUNK_SIZE = 8*1024*1024 # 8MB
        for chunk in iter(lambda: f.read(CHUNK_SIZE), b""):
            hasher.update(chunk)
    return hasher.hexdigest()
    
def verify_and_extract(animal):
    print(f"Confirming data integrity for {animal}.zip ...")
    zip_md5 = compute_md5(f"{save_dir}/dataset/image/{animal}.zip")
    
    with open(f"{save_dir}/dataset/image/{animal}_md5.txt", 'r') as file:
        expected_md5 = file.read().strip().split()[0]
    
    if zip_md5 == expected_md5:
        print(f"MD5 sum for {animal}.zip is correct.")

        print(f"Extracting {animal}.zip ...")
        with zipfile.ZipFile(f"{save_dir}/dataset/image/{animal}.zip", 'r') as zip_ref:
            zip_ref.extractall(f"{save_dir}/dataset/image/")
        print(f"{animal}.zip extracted.")
        print(f"Cleaning up for {animal} ...")
        os.remove(f"{save_dir}/dataset/image/{animal}.zip")
        os.remove(f"{save_dir}/dataset/image/{animal}_md5.txt")
    else:
        print(f"MD5 sum for {animal}.zip is incorrect. Expected: {expected_md5}, but got: {zip_md5}.")
        print("There may be data corruption. Please try to download and reconstruct the data again or reach out to the corresponding authors for assistance.")

with concurrent.futures.ThreadPoolExecutor() as executor:
    executor.map(verify_and_extract, animals)

print("Download script finished.")