The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: BadZipFile Message: zipfiles that span multiple disks are not supported Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 79, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1885, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1270, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 589, in infer_module_for_data_files split_modules = { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 590, in <dictcomp> split: infer_module_for_data_files_list(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 531, in infer_module_for_data_files_list return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 559, in infer_module_for_data_files_list_in_archives for f in xglob(extracted, recursive=True, download_config=download_config)[ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1291, in xglob fs, *_ = url_to_fs(urlpath, **storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 395, in url_to_fs fs = filesystem(protocol, **inkwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/registry.py", line 293, in filesystem return cls(**storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 80, in __call__ obj = super().__call__(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/implementations/zip.py", line 62, in __init__ self.zip = zipfile.ZipFile( File "/usr/local/lib/python3.9/zipfile.py", line 1266, in __init__ self._RealGetContents() File "/usr/local/lib/python3.9/zipfile.py", line 1329, in _RealGetContents endrec = _EndRecData(fp) File "/usr/local/lib/python3.9/zipfile.py", line 286, in _EndRecData return _EndRecData64(fpin, -sizeEndCentDir, endrec) File "/usr/local/lib/python3.9/zipfile.py", line 232, in _EndRecData64 raise BadZipFile("zipfiles that span multiple disks are not supported") zipfile.BadZipFile: zipfiles that span multiple disks are not supported
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
DLCR: A Generative Data Expansion Framework via Diffusion for Clothes-Changing Person Re-ID
Publicly hosted repository for the generated data presented in "DLCR: A Generative Data Expansion Framework via Diffusion for Clothes-Changing Person Re-ID", under review in WACV 2025 Algorithms Track.
We generate and release over 2.1M synthetic images across 4 CC-ReID datasets, namely PRCC, CCVID, VC-Clothes, and LaST. We use diffusion inpainting to change the subject's clothing in an image, increasing each dataset's clothing diversity by over 10x and improving downstream CC-ReID performance. Upon acceptance, please see the paper for more details.
The generated datasets maintain the same directory structure as the corresponding original datasets. For each original image, we created a .png file that includes all 10 variants of the original image. For example, given the original sample:
We store its 10 variants as a single image of the following form:
Additionally, we store a .txt file that contains the descriptions of the clothing for each variant, with each description on a separate line.
Gray shirt| Blue jeans| Black shoes
Black top| Black pants| Black shoes
White top| Blue jeans| White shoes
blue shirt| black shorts| black shoes.
Shirt | Jeans | Shoes
Yellow t-shirt| Black pants| Black shoes
Gray top|Blue jeans|White shoes
Green top| Blue shorts| White shoes
Gray t-shirt| Black pants| Black shoes
Black shirt| Black pants| Black shoes
To read the generated images when you have acces to the name of the original image, you can use the following code:
generated_images = os.path.join(self.generated_data_location, img_name+".png")
generated_images = Image.open(generated_images)
generated_images = np.array(generated_images)
generated_images = rearrange(generated_images, 'h (b w) c->b h w c', b=10)
- Downloads last month
- 83