File size: 4,607 Bytes
f40ae4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import datasets
_DESCRIPTION = """\
Parallel Igbo-English Dataset
"""
_HOMEPAGE_URL = "https://github.com/IgnatiusEzeani/IGBONLP/tree/master/ig_en_mt"
_CITATION = """\
@misc{ezeani2020igboenglish,
title={Igbo-English Machine Translation: An Evaluation Benchmark},
author={Ignatius Ezeani and Paul Rayson and Ikechukwu Onyenwe and Chinedu Uchechukwu and Mark Hepple},
year={2020},
eprint={2004.00648},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2004.00648}
}
"""
_VERSION = "1.0.0"
_TRAIN_EN = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/train.en"
_VALID_EN = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/val.en"
_TEST_EN = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/test.en"
_TRAIN_IG = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/train.ig"
_VALID_IG = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/val.ig"
_TEST_IG = "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_en_mt/benchmark_dataset/test.ig"
_LANGUAGE_PAIRS = [
("ig", "en"),
]
class IgboEnglishMachineTranslationConfig(datasets.BuilderConfig):
def __init__(self, *args, lang1=None, lang2=None, **kwargs):
super().__init__(
*args,
name=f"{lang1}-{lang2}",
**kwargs,
)
self.lang1 = lang1
self.lang2 = lang2
class IgboEnglishMachineTranslation(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
IgboEnglishMachineTranslationConfig(
lang1=lang1,
lang2=lang2,
description=f"Translating {lang1} to {lang2} or vice versa",
version=datasets.Version(_VERSION),
)
for lang1, lang2 in _LANGUAGE_PAIRS
]
BUILDER_CONFIG_CLASS = IgboEnglishMachineTranslationConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_en = dl_manager.download_and_extract(_TRAIN_EN)
train_ig = dl_manager.download_and_extract(_TRAIN_IG)
valid_en = dl_manager.download_and_extract(_VALID_EN)
valid_ig = dl_manager.download_and_extract(_VALID_IG)
test_en = dl_manager.download_and_extract(_TEST_EN)
test_ig = dl_manager.download_and_extract(_TEST_IG)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"ig_datapath": train_ig, "en_datapath": train_en},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"ig_datapath": valid_ig, "en_datapath": valid_en},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"ig_datapath": test_ig, "en_datapath": test_en},
),
]
def _generate_examples(self, ig_datapath, en_datapath):
with open(ig_datapath, encoding="utf-8") as f1, open(en_datapath, encoding="utf-8") as f2:
for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
x = x.strip()
y = y.strip()
result = (
sentence_counter,
{
"id": str(sentence_counter),
"translation": {"ig": x, "en": y},
},
)
yield result
|