The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 8 new columns ({'0.151', '0.283', '-5KQ66BBWC4', '0.811', '0.077', '1', '80', '0902'}) and 5 missing columns ({'time_start', 'split', 'label', 'youtube_id', 'time_end'}). This happened while the csv dataset builder was generating data using hf://datasets/iejMac/CLIP-Kinetics700/data/annotations/AVA-Kinetics/ava_kinetics_v1_0/ava_train_v2.2.csv (at revision 9e6b82e3134265d63fad9308eb996dbe21b2653c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast -5KQ66BBWC4: string 0902: int64 0.077: double 0.151: double 0.283: double 0.811: double 80: double 1: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1142 to {'label': Value(dtype='string', id=None), 'youtube_id': Value(dtype='string', id=None), 'time_start': Value(dtype='int64', id=None), 'time_end': Value(dtype='int64', id=None), 'split': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1316, in compute_config_parquet_and_info_response parquet_operations, partial = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 909, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 8 new columns ({'0.151', '0.283', '-5KQ66BBWC4', '0.811', '0.077', '1', '80', '0902'}) and 5 missing columns ({'time_start', 'split', 'label', 'youtube_id', 'time_end'}). This happened while the csv dataset builder was generating data using hf://datasets/iejMac/CLIP-Kinetics700/data/annotations/AVA-Kinetics/ava_kinetics_v1_0/ava_train_v2.2.csv (at revision 9e6b82e3134265d63fad9308eb996dbe21b2653c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
label
string | youtube_id
string | time_start
int64 | time_end
int64 | split
string |
---|---|---|---|---|
clay pottery making | ---0dWlqevI | 19 | 29 | train |
news anchoring | ---aQ-tA5_A | 9 | 19 | train |
using bagging machine | ---j12rm3WI | 14 | 24 | train |
javelin throw | --07WQ2iBlw | 1 | 11 | train |
climbing a rope | --0NTAs-fA0 | 29 | 39 | train |
sipping cup | --0l35AkU34 | 68 | 78 | train |
flipping pancake | --33Lscn6sk | 4 | 14 | train |
tickling | --3OAstUWtU | 45 | 55 | train |
watering plants | --3lTx87ebQ | 23 | 33 | train |
eating spaghetti | --3ouPhoy2A | 20 | 30 | train |
dribbling basketball | --4-0ihtnBU | 58 | 68 | train |
calligraphy | --4NLFGNfAs | 11 | 21 | train |
playing tennis | --56QUhyDQM | 185 | 195 | train |
brushing floor | --5Tg3gW4s4 | 8 | 18 | train |
chiseling stone | --5kVeU1uco | 58 | 68 | train |
crossing eyes | --5urtlw6gs | 49 | 59 | train |
mountain climber (exercise) | --65_UAU7ao | 0 | 10 | train |
tap dancing | --6q_33gNew | 132 | 142 | train |
planing wood | --6zxbYq5M4 | 207 | 217 | train |
using inhaler | --71SekUwOA | 13 | 23 | train |
playing saxophone | --7VUM9MKg4 | 136 | 146 | train |
slapping | --7goKgS4kc | 15 | 25 | train |
shaking head | --8FQVwWH0M | 3 | 13 | train |
driving tractor | --9s8lCov-I | 2 | 12 | train |
delivering mail | --AC9Wionlg | 0 | 10 | train |
riding a bike | --DiygSPius | 52 | 62 | train |
calligraphy | --Dt5ovTecs | 3 | 13 | train |
putting in contact lenses | --EZD1uEVhM | 63 | 73 | train |
climbing a rope | --EaS9P7ZdQ | 13 | 23 | train |
shaving head | --FTpoPhxcA | 570 | 580 | train |
doing jigsaw puzzle | --GEr5-PyTI | 0 | 10 | train |
playing bass guitar | --GF746y6UM | 496 | 506 | train |
playing with trains | --GaSxELz-8 | 39 | 49 | train |
digging | --ILYNHl3e4 | 541 | 551 | train |
brushing teeth | --IPbe5ZMCI | 2 | 12 | train |
washing hair | --JGqNj9Bv0 | 33 | 43 | train |
opening bottle (not wine) | --KkHPoWdW8 | 25 | 35 | train |
finger snapping | --Kr1PZaPDI | 1 | 11 | train |
crossing eyes | --LrHkjbax8 | 3 | 13 | train |
doing nails | --MW2zcDiNg | 197 | 207 | train |
making balloon shapes | --Nixnc9DQg | 17 | 27 | train |
pouring beer | --O2qCO6zBI | 25 | 35 | train |
preparing salad | --O4p15yejk | 351 | 361 | train |
playing violin | --PwWfN1Ae4 | 97 | 107 | train |
feeding birds | --PyMoD3_eg | 20 | 30 | train |
wading through water | --QG-bjOFSA | 0 | 10 | train |
cutting watermelon | --QfWXBoeA0 | 125 | 135 | train |
petting cat | --Qq8Y0ywHA | 2 | 12 | train |
playing drums | --RVKBMp_2M | 79 | 89 | train |
doing aerobics | --RtHwqbEWA | 139 | 149 | train |
sausage making | --RuMpNXawk | 277 | 287 | train |
playing ukulele | --SOz3xjWfA | 37 | 47 | train |
throwing knife | --SSk3r84yw | 0 | 10 | train |
skiing slalom | --SrV9bGzRA | 197 | 207 | train |
knitting | --T4dtRsSSg | 25 | 35 | train |
head stand | --U3pqp_C5g | 139 | 149 | train |
dining | --UW3CcUqaU | 20 | 30 | train |
hurdling | --VnA3ztuZg | 57 | 67 | train |
throwing water balloon | --VtCsmlD18 | 47 | 57 | train |
tiptoeing | --WckmtKBpc | 17 | 27 | train |
news anchoring | --XQ47BGhdc | 46 | 56 | train |
opening present | --XR9XONO2U | 460 | 470 | train |
changing gear in car | --XWWLL8Spk | 0 | 10 | train |
playing cymbals | --Y25nDn2Wk | 60 | 70 | train |
chopping meat | --YKMD5LYtw | 89 | 99 | train |
making paper aeroplanes | --YXAAC0WWA | 35 | 45 | train |
folding clothes | --ZrYtRjYfs | 87 | 97 | train |
playing pinball | --_3Wbv-1YY | 319 | 329 | train |
changing gear in car | --_fOePZDoY | 41 | 51 | train |
vacuuming floor | --bQb-k_Tjs | 9 | 19 | train |
shuffling feet | --cIG2WqOf4 | 20 | 30 | train |
recording music | --cLZr4EsEk | 133 | 143 | train |
historical reenactment | --cOOZbreL4 | 129 | 139 | train |
surfing water | --coBvtS-eQ | 57 | 67 | train |
playing drums | --d6UCSGoHg | 51 | 61 | train |
bowling | --dVV4_CSvw | 33 | 43 | train |
snowkiting | --feYHvtteA | 25 | 35 | train |
lighting fire | --gMWIQlLvs | 122 | 132 | train |
eating cake | --gtKHP3Q8E | 0 | 10 | train |
inflating balloons | --gx7yb1-x0 | 298 | 308 | train |
letting go of balloon | --h55t9J0Xo | 7 | 17 | train |
calligraphy | --hZSQ7Q7qs | 145 | 155 | train |
chopping meat | --iGd5Zf7-k | 8 | 18 | train |
bee keeping | --iIcadFu9c | 90 | 100 | train |
cutting apple | --ijHZ19K_M | 25 | 35 | train |
drooling | --ixUOhZodk | 56 | 66 | train |
gymnastics tumbling | --jD1Yu5ZnQ | 37 | 47 | train |
archaeological excavation | --jfcGztatc | 6 | 16 | train |
clapping | --jktjgj81k | 5 | 15 | train |
giving or receiving award | --kbTDDIiP0 | 62 | 72 | train |
cutting cake | --kyWqclQ24 | 256 | 266 | train |
visiting the zoo | --lmBtwsdBc | 0 | 10 | train |
marriage proposal | --loSjz82iU | 83 | 93 | train |
petting animal (not cat) | --lrRHlpK68 | 218 | 228 | train |
egg hunting | --lvipPLwp0 | 0 | 10 | train |
planting trees | --mBL7P45yE | 394 | 404 | train |
biking through snow | --mI_-gaZLk | 18 | 28 | train |
playing ping pong | --mLOzFpQoo | 7 | 17 | train |
brushing teeth | --mQfG6Wu48 | 28 | 38 | train |
dribbling basketball | --mTlk9ommA | 48 | 58 | train |
Dataset Card for CLIP-Kinetics70
Dataset Description
Dataset Summary
CLIP-Kinetics700 is a compressed version of the Kinetics700 dataset using OpenAI's CLIP model.
The original dataset is ~700 GB making it difficult to use and hold in memory on one machine. By downsampling each video to 1 FPS and encoding the frames using CLIP we we're able to compress the dataset to ~8 GB making it very memory-friendly and easy to use.
Dataset Preprocessing
clip-video-encode is a tool you can use to easily and efficiently compute CLIP embeddings from video frames. We used it to generate the embeddings for this dataset.
Dataset Structure
Data Format
We formatted this as a WebDataset for better data-loading performance when training the models. Each split contains a list of tar files each with 10000 data samples. This format can be read and used easily using the EmbeddingWebDatasetReader from clip-video-encode.
CLIP-Kinetics700
βββ splits.csv
βββ ds_00000.tar
| βββ vid_00000.npy
| βββ vid_00000.txt
| βββ vid_00000.json
| βββ vid_00001.npy
| βββ vid_00001.txt
| βββ vid_00001.json
| βββ ...
| βββ vid_10000.npy
| βββ vid_10000.txt
| βββ vid_10000.json
βββ ds_00001.tar
| βββ vid_10001.npy
| βββ vid_10001.txt
| βββ vid_10001.json
β ...
...
Data Fields
- vid.npy: the numpy array with the per-frame embeddings. Shape -> (n_frames, 512)
- vid.cap: the "caption" of the video. In this case it is the Kinetics700 label.
- vid.json: additional metadata - YouTube video ID, start time, end time.
Data Splits
- Train - 536489 samples | 54 tar's
- Validation - 33966 samples | 4 tar's
- Test - 64532 samples | 7 tar's
Dataset Creation
Source Data
Data was sourced from DeepMind's Kinetics700 dataset and downloaded using this convenient repository.
Simple Experiments
Using this repository we evaluate CLIP-Kinetics700 with the following simple methods:
Zero-shot Evaluation
Accuracy | |
---|---|
Top-1 | 0.31 |
Top-5 | 0.56 |
mean(Top1, Top5) | 0.44 |
Linear-probe Evaluation
Accuracy | |
---|---|
Top-1 | 0.41 |
Top-5 | 0.65 |
mean(Top1, Top5) | 0.53 |
- Downloads last month
- 200