File size: 4,504 Bytes
bedae97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
_CITATION = ""
_DESCRIPTION = ""
_URL = "https://huggingface.co/datasets/husnu/tquad2/raw/main/"
_URLS = {
"train": _URL + "tquad_train_data_v2.json",
"dev": _URL + "tquad_dev_data_v2.json",
}
class TQuAD2Config(datasets.BuilderConfig):
"""BuilderConfig for TQuAD2."""
def __init__(self, **kwargs):
"""BuilderConfig for TQuAD2.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(TQuAD2Config, self).__init__(**kwargs)
class TQuAD2(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
TQuAD2Config(name="tquad2", version=datasets.Version("2.0.0"), description="TQuAD2 dataset"),
]
IDS_ = []
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://huggingface.co/datasets/husnu/tquad2",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
squad = json.load(f)
for example in squad["data"]:
title = example.get("title", "")
for paragraph in example["paragraphs"]:
context = paragraph["context"] # do not strip leading blank spaces GH-2585
for qa in paragraph["qas"]:
question = qa["question"]
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"] for answer in qa["answers"]]
# if id_ is already in the dataset, we skip it
while id_ in self.IDS_:
if isinstance(id_, int):
id_ = id_ + 1
else:
id_ = id_ + "_duplicate"
self.IDS_.append(id_)
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
|