Bugra Hamza Gundog commited on
Commit
bedae97
1 Parent(s): f7d6ef9

Upload tquad2.py

Browse files

The config and dataset classes. Without this file, load_dataset function raises a Dataset Generation error.

Files changed (1) hide show
  1. tquad2.py +116 -0
tquad2.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import datasets
4
+ from datasets.tasks import QuestionAnsweringExtractive
5
+
6
+ _CITATION = ""
7
+
8
+ _DESCRIPTION = ""
9
+
10
+ _URL = "https://huggingface.co/datasets/husnu/tquad2/raw/main/"
11
+ _URLS = {
12
+ "train": _URL + "tquad_train_data_v2.json",
13
+ "dev": _URL + "tquad_dev_data_v2.json",
14
+ }
15
+
16
+
17
+ class TQuAD2Config(datasets.BuilderConfig):
18
+ """BuilderConfig for TQuAD2."""
19
+
20
+ def __init__(self, **kwargs):
21
+ """BuilderConfig for TQuAD2.
22
+ Args:
23
+ **kwargs: keyword arguments forwarded to super.
24
+ """
25
+ super(TQuAD2Config, self).__init__(**kwargs)
26
+
27
+
28
+ class TQuAD2(datasets.GeneratorBasedBuilder):
29
+ BUILDER_CONFIGS = [
30
+ TQuAD2Config(name="tquad2", version=datasets.Version("2.0.0"), description="TQuAD2 dataset"),
31
+ ]
32
+
33
+ IDS_ = []
34
+
35
+ def _info(self):
36
+ return datasets.DatasetInfo(
37
+ # This is the description that will appear on the datasets page.
38
+ description=_DESCRIPTION,
39
+ # datasets.features.FeatureConnectors
40
+ features=datasets.Features(
41
+ {
42
+ "id": datasets.Value("string"),
43
+ "title": datasets.Value("string"),
44
+ "context": datasets.Value("string"),
45
+ "question": datasets.Value("string"),
46
+ "answers": datasets.features.Sequence(
47
+ {
48
+ "text": datasets.Value("string"),
49
+ "answer_start": datasets.Value("int32"),
50
+ }
51
+ ),
52
+ # These are the features of your dataset like images, labels ...
53
+ }
54
+ ),
55
+ # If there's a common (input, target) tuple from the features,
56
+ # specify them here. They'll be used if as_supervised=True in
57
+ # builder.as_dataset.
58
+ supervised_keys=None,
59
+ # Homepage of the dataset for documentation
60
+ homepage="https://huggingface.co/datasets/husnu/tquad2",
61
+ citation=_CITATION,
62
+ task_templates=[
63
+ QuestionAnsweringExtractive(
64
+ question_column="question", context_column="context", answers_column="answers"
65
+ )
66
+ ],
67
+ )
68
+
69
+ def _split_generators(self, dl_manager):
70
+ """Returns SplitGenerators."""
71
+ # dl_manager is a datasets.download.DownloadManager that can be used to
72
+ # download and extract URLs
73
+ urls_to_download = _URLS
74
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
75
+
76
+ return [
77
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
78
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
79
+ ]
80
+
81
+ def _generate_examples(self, filepath):
82
+ """Yields examples."""
83
+ with open(filepath, encoding="utf-8") as f:
84
+ squad = json.load(f)
85
+ for example in squad["data"]:
86
+ title = example.get("title", "")
87
+ for paragraph in example["paragraphs"]:
88
+ context = paragraph["context"] # do not strip leading blank spaces GH-2585
89
+ for qa in paragraph["qas"]:
90
+ question = qa["question"]
91
+ id_ = qa["id"]
92
+
93
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
94
+ answers = [answer["text"] for answer in qa["answers"]]
95
+
96
+ # if id_ is already in the dataset, we skip it
97
+ while id_ in self.IDS_:
98
+ if isinstance(id_, int):
99
+ id_ = id_ + 1
100
+ else:
101
+ id_ = id_ + "_duplicate"
102
+
103
+ self.IDS_.append(id_)
104
+
105
+ # Features currently used are "context", "question", and "answers".
106
+ # Others are extracted here for the ease of future expansions.
107
+ yield id_, {
108
+ "title": title,
109
+ "context": context,
110
+ "question": question,
111
+ "id": id_,
112
+ "answers": {
113
+ "answer_start": answer_starts,
114
+ "text": answers,
115
+ },
116
+ }