Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 5,271 Bytes
688a411
 
8fff0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688a411
8fff0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
license: apache-2.0
language:
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- en
- el
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- nb
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
size_categories:
- 100M<n<1B
---

# Dataset Card for EntityCS

## Dataset Description
 
- Repository: https://github.com/huawei-noah/noah-research/tree/master/NLP/EntityCS  
- Paper: https://aclanthology.org/2022.findings-emnlp.499.pdf  
- Point of Contact: efstathia.christopoulou@huawei.com   

### Dataset Summary

We use the English Wikipedia and leverage entity information from Wikidata to construct an entity-based Code Switching corpus. 
To achieve this, we make use of wikilinks in Wikipedia, i.e. links from one page to another.
We use the English [Wikipedia dump](https://dumps.wikimedia.org/enwiki/latest/) (November 2021) and extract raw text with [WikiExtractor](https://github.com/attardi/wikiextractor) while keeping track of wikilinks.
Since we are interested in creating entity-level CS instances, we only keep sentences containing at least one wikilink.
Given an English sentence with wikilinks, we first map the entity in each wikilink to its corresponding Wikidata ID and
retrieve its available translations from Wikidata.
For each sentence, we check which languages have translations for all entities in that sentence, and consider those as candidates for code-switching. 
We ensure all entities are code-switched to the same target language in a single sentence, avoiding noise from including too many languages. 
To control the size of the corpus, we generate up to five code-switched sentences for each English sentence. 
In particular, if fewer than five languages have translations available for all the entities in a sentence, we create code-switched instances with all of them. 
Otherwise, we randomly select five target languages from the candidates. 
If no candidate languages can be found, we do not code-switch the sentence, instead, we keep it as part of the English corpus. 
Finally, we surround each entity with entity indicators (`<e>`, `</e>`).

### Supported Tasks and Leaderboards

The dataset was developped for intermediate pre-training of language models and can be used on any downstream task. 
In the paper it's effectiveness is proven on entity-centric tasks, such as NER.

### Languages

The dataset covers 93 languages in total, including English.

## Dataset Structure

### Data Statistics

| Statistic                     | Count       |
|:------------------------------|------------:|
| Languages                     | 93          |
| English Sentences             | 54,469,214  |
| English Entities              | 104,593,076 |
| Average Sentence Length       | 23.37       |
| Average Entities per Sentence | 2           |
| CS Sentences per EN Sentence  | ≤ 5         |
| CS Sentences                  | 231,124,422 |
| CS Entities                   | 420,907,878 |

### Data Fields

Each instance contains 3 fields:
- id: Unique ID of each sentence
- language: The language of choice for entity code-switching of the given sentence
- en_sentence: The original English sentence
- cs_sentence: The code-switched sentence

An example of what a data instance looks like:
```
{
  'id': 19, 
  'en_sentence': 'The subs then enter a <en>coral reef</en> with many bright reflective colors.', 
  'cs_sentence': 'The subs then enter a <de>Korallenriff</de> with many bright reflective colors.', 
  'language': 'de'
}
```

### Data Splits

There is a single data split for each language. You can randomly select a few examples to serve as validation set.


### Limitations

An important limitation of the work is that before code-switching an entity, its morphological inflection is not checked. 
This can lead to potential errors as the form of the CS entity might not agree with the surrounding context (e.g. plural). 
There should be few cases as such, as we are only switching entities. However, this should be improved in a later version of the corpus.
Secondly, the diversity of languages used to construct the EntityCS corpus is restricted to the overlap between the available languages in WikiData and XLM-R pre-training.
This choice was for a better comparison between models, however it is possible to extend the corpus with more languages that XLM-R does not cover, following
the procedure presented in the paper.

### Citation

```html
@inproceedings{whitehouse-etal-2022-entitycs,
    title = "{E}ntity{CS}: Improving Zero-Shot Cross-lingual Transfer with Entity-Centric Code Switching",
    author = "Whitehouse, Chenxi  and
      Christopoulou, Fenia  and
      Iacobacci, Ignacio",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-emnlp.499",
    pages = "6698--6714"
}
```