File size: 7,912 Bytes
cfb895b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8c82
 
 
 
cfb895b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5902de
 
 
 
 
cfb895b
 
 
 
 
fd87848
9ae8c82
fd87848
 
 
cfb895b
 
 
 
 
a5902de
 
 
 
 
 
 
a3aff80
 
 
 
a5902de
 
 
 
 
 
 
 
 
cfb895b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd87848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfb895b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08cf4a
 
 
 
 
 
cfb895b
 
a41cc07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd87848
a5902de
 
 
 
 
 
 
a3aff80
 
 
 
a5902de
 
 
 
cfb895b
 
 
 
 
 
 
 
 
 
 
a41cc07
cfb895b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import datasets as ds
import pandas as pd

_CITATION = """\
@article{yanaka-mineshima-2022-compositional,
    title = "Compositional Evaluation on {J}apanese Textual Entailment and Similarity",
    author = "Yanaka, Hitomi and Mineshima, Koji",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "10",
    year = "2022",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/2022.tacl-1.73",
    doi = "10.1162/tacl_a_00518",
    pages = "1266--1284",
}
"""

_DESCRIPTION = """\
Japanese Sentences Involving Compositional Knowledge (JSICK) Dataset.
JSICK is the Japanese NLI and STS dataset by manually translating the English dataset SICK (Marelli et al., 2014) into Japanese.
We hope that our dataset will be useful in research for realizing more advanced models that are capable of appropriately performing multilingual compositional inference.
(from official website)
"""

_HOMEPAGE = "https://github.com/verypluming/JSICK"

_LICENSE = "CC BY-SA 4.0"

_URLS = {
    "base": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick/jsick.tsv",
    "stress": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick-stress/jsick-stress-all-annotations.tsv",
}


class JSICKDataset(ds.GeneratorBasedBuilder):
    VERSION = ds.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "base"

    BUILDER_CONFIGS = [
        ds.BuilderConfig(
            name="base",
            version=VERSION,
            description="hoge",
        ),
        ds.BuilderConfig(
            name="original",
            version=VERSION,
            description="hoge",
        ),
        ds.BuilderConfig(
            name="stress",
            version=VERSION,
            description="fuga",
        ),
        ds.BuilderConfig(
            name="stress-original",
            version=VERSION,
            description="fuga",
        ),
    ]

    def _info(self) -> ds.DatasetInfo:
        labels = ds.ClassLabel(names=["entailment", "neutral", "contradiction"])
        if self.config.name == "base":
            features = ds.Features(
                {
                    "id": ds.Value("int32"),
                    "premise": ds.Value("string"),
                    "hypothesis": ds.Value("string"),
                    "label": labels,
                    "score": ds.Value("float32"),
                    "premise_en": ds.Value("string"),
                    "hypothesis_en": ds.Value("string"),
                    "label_en": labels,
                    "score_en": ds.Value("float32"),
                    "corr_entailment_labelAB_En": ds.Value("string"),
                    "corr_entailment_labelBA_En": ds.Value("string"),
                    "image_ID": ds.Value("string"),
                    "original_caption": ds.Value("string"),
                    "semtag_short": ds.Value("string"),
                    "semtag_long": ds.Value("string"),
                }
            )
        elif self.config.name == "original":
            features = ds.Features(
                {
                    "pair_ID": ds.Value("int32"),
                    "sentence_A_Ja": ds.Value("string"),
                    "sentence_B_Ja": ds.Value("string"),
                    "entailment_label_Ja": labels,
                    "relatedness_score_Ja": ds.Value("float32"),
                    "sentence_A_En": ds.Value("string"),
                    "sentence_B_En": ds.Value("string"),
                    "entailment_label_En": labels,
                    "relatedness_score_En": ds.Value("float32"),
                    "corr_entailment_labelAB_En": ds.Value("string"),
                    "corr_entailment_labelBA_En": ds.Value("string"),
                    "image_ID": ds.Value("string"),
                    "original_caption": ds.Value("string"),
                    "semtag_short": ds.Value("string"),
                    "semtag_long": ds.Value("string"),
                }
            )

        elif self.config.name == "stress":
            features = ds.Features(
                {
                    "id": ds.Value("string"),
                    "premise": ds.Value("string"),
                    "hypothesis": ds.Value("string"),
                    "label": labels,
                    "score": ds.Value("float32"),
                    "sentence_A_Ja_origin": ds.Value("string"),
                    "entailment_label_origin": labels,
                    "relatedness_score_Ja_origin": ds.Value("float32"),
                    "rephrase_type": ds.Value("string"),
                    "case_particles": ds.Value("string"),
                }
            )

        elif self.config.name == "stress_original":
            features = ds.Features(
                {
                    "pair_ID": ds.Value("string"),
                    "sentence_A_Ja": ds.Value("string"),
                    "sentence_B_Ja": ds.Value("string"),
                    "entailment_label_Ja": labels,
                    "relatedness_score_Ja": ds.Value("float32"),
                    "sentence_A_Ja_origin": ds.Value("string"),
                    "entailment_label_origin": labels,
                    "relatedness_score_Ja_origin": ds.Value("float32"),
                    "rephrase_type": ds.Value("string"),
                    "case_particles": ds.Value("string"),
                }
            )

        return ds.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=features,
        )

    def _split_generators(self, dl_manager: ds.DownloadManager):
        if self.config.name in ["base", "original"]:
            url = _URLS["base"]
        elif self.config.name in ["stress", "stress_original"]:
            url = _URLS["stress"]

        data_path = dl_manager.download_and_extract(url)
        df: pd.DataFrame = pd.read_table(data_path, sep="\t", header=0)

        if self.config.name in ["stress", "stress_original"]:
            df = df[
                [
                    "pair_ID",
                    "sentence_A_Ja",
                    "sentence_B_Ja",
                    "entailment_label_Ja",
                    "relatedness_score_Ja",
                    "sentence_A_Ja_origin",
                    "entailment_label_origin",
                    "relatedness_score_Ja_origin",
                    "rephrase_type",
                    "case_particles",
                ]
            ]

        if self.config.name in ["base", "stress"]:
            df = df.rename(
                columns={
                    "pair_ID": "id",
                    "sentence_A_Ja": "premise",
                    "sentence_B_Ja": "hypothesis",
                    "entailment_label_Ja": "label",
                    "relatedness_score_Ja": "score",
                    "sentence_A_En": "premise_en",
                    "sentence_B_En": "hypothesis_en",
                    "entailment_label_En": "label_en",
                    "relatedness_score_En": "score_en",
                }
            )

        if self.config.name in ["base", "original"]:
            return [
                ds.SplitGenerator(
                    name=ds.Split.TRAIN,
                    gen_kwargs={"df": df[df["data"] == "train"].drop("data", axis=1)},
                ),
                ds.SplitGenerator(
                    name=ds.Split.TEST,
                    gen_kwargs={"df": df[df["data"] == "test"].drop("data", axis=1)},
                ),
            ]

        elif self.config.name in ["stress", "stress_original"]:
            return [
                ds.SplitGenerator(
                    name=ds.Split.TEST,
                    gen_kwargs={"df": df},
                ),
            ]

    def _generate_examples(self, df: pd.DataFrame):
        for i, row in enumerate(df.to_dict("records")):
            yield i, row