Datasets:
Size:
10K - 100K
License:
File size: 13,467 Bytes
fe79ef6 9ae8c82 295bf19 9ae8c82 fe79ef6 9ae8c82 6b1df67 9ae8c82 a3aff80 9ae8c82 6b1df67 9ae8c82 6b1df67 9ae8c82 6b1df67 9ae8c82 6b1df67 b08cf4a 9ae8c82 6b1df67 b08cf4a 9ae8c82 a3aff80 9ae8c82 a3aff80 9ae8c82 6b1df67 9ae8c82 a3aff80 9ae8c82 6b1df67 9ae8c82 6fff322 6b1df67 9ae8c82 6b1df67 6fff322 9ae8c82 295bf19 9ae8c82 295bf19 9ae8c82 295bf19 9ae8c82 295bf19 9ae8c82 295bf19 9ae8c82 295bf19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
---
annotations_creators:
- expert-generated
language:
- ja
- en
language_creators:
- expert-generated
license:
- cc-by-sa-4.0
multilinguality:
- translation
pretty_name: JSICK
size_categories:
- 10K<n<100K
source_datasets:
- extended|sick
tags:
- semantic-textual-similarity
- sts
task_categories:
- sentence-similarity
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
---
# Dataset Card for JaNLI
## Table of Contents
- [Dataset Card for JaNLI](#dataset-card-for-janli)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Japanese Sentences Involving Compositional Knowledge (JSICK) Dataset.](#japanese-sentences-involving-compositional-knowledge-jsick-dataset)
- [JSICK-stress Test set](#jsick-stress-test-set)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [base](#base)
- [stress](#stress)
- [Data Fields](#data-fields)
- [base](#base-1)
- [stress](#stress-1)
- [Data Splits](#data-splits)
- [Annotations](#annotations)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/verypluming/JSICK
- **Repository:** https://github.com/verypluming/JSICK
- **Paper:** https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00518/113850/Compositional-Evaluation-on-Japanese-Textual
- **Paper:** https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_4J3GS6f02/_pdf/-char/ja
### Dataset Summary
From official [GitHub](https://github.com/verypluming/JSICK):
#### Japanese Sentences Involving Compositional Knowledge (JSICK) Dataset.
JSICK is the Japanese NLI and STS dataset by manually translating the English dataset [SICK (Marelli et al., 2014)](https://aclanthology.org/L14-1314/) into Japanese.
We hope that our dataset will be useful in research for realizing more advanced models that are capable of appropriately performing multilingual compositional inference.
#### JSICK-stress Test set
The JSICK-stress test set is a dataset to investigate whether models capture word order and case particles in Japanese.
The JSICK-stress test set is provided by transforming syntactic structures of sentence pairs in JSICK, where we analyze whether models are attentive to word order and case particles to predict entailment labels and similarity scores.
The JSICK test set contains 1666, 797, and 1006 sentence pairs (A, B) whose premise sentences A (the column `sentence_A_Ja_origin`) include the basic word order involving
ga-o (nominative-accusative), ga-ni (nominative-dative), and ga-de (nominative-instrumental/locative) relations, respectively.
We provide the JSICK-stress test set by transforming syntactic structures of these pairs by the following three ways:
- `scrum_ga_o`: a scrambled pair, where the word order of premise sentences A is scrambled into o-ga, ni-ga, and de-ga order, respectively.
- `ex_ga_o`: a rephrased pair, where the only case particles (ga, o, ni, de) in the premise A are swapped
- `del_ga_o`: a rephrased pair, where the only case particles (ga, o, ni) in the premise A are deleted
### Languages
The language data in JSICK is in Japanese and English.
## Dataset Structure
### Data Instances
When loading a specific configuration, users has to append a version dependent suffix:
```python
import datasets as ds
dataset: ds.DatasetDict = ds.load_dataset("hpprc/jsick")
print(dataset)
# DatasetDict({
# train: Dataset({
# features: ['id', 'premise', 'hypothesis', 'label', 'score', 'premise_en', 'hypothesis_en', 'label_en', 'score_en', 'corr_entailment_labelAB_En', 'corr_entailment_labelBA_En', 'image_ID', 'original_caption', 'semtag_short', 'semtag_long'],
# num_rows: 4500
# })
# test: Dataset({
# features: ['id', 'premise', 'hypothesis', 'label', 'score', 'premise_en', 'hypothesis_en', 'label_en', 'score_en', 'corr_entailment_labelAB_En', 'corr_entailment_labelBA_En', 'image_ID', 'original_caption', 'semtag_short', 'semtag_long'],
# num_rows: 4927
# })
# })
dataset: ds.DatasetDict = ds.load_dataset("hpprc/jsick", name="stress")
print(dataset)
# DatasetDict({
# test: Dataset({
# features: ['id', 'premise', 'hypothesis', 'label', 'score', 'sentence_A_Ja_origin', 'entailment_label_origin', 'relatedness_score_Ja_origin', 'rephrase_type', 'case_particles'],
# num_rows: 900
# })
# })
```
#### base
An example of looks as follows:
```json
{
'id': 1,
'premise': '子供たちのグループが庭で遊んでいて、後ろの方には年を取った男性が立っている',
'hypothesis': '庭にいる男の子たちのグループが遊んでいて、男性が後ろの方に立っている',
'label': 1, // (neutral)
'score': 3.700000047683716,
'premise_en': 'A group of kids is playing in a yard and an old man is standing in the background',
'hypothesis_en': 'A group of boys in a yard is playing and a man is standing in the background',
'label_en': 1, // (neutral)
'score_en': 4.5,
'corr_entailment_labelAB_En': 'nan',
'corr_entailment_labelBA_En': 'nan',
'image_ID': '3155657768_b83a7831e5.jpg',
'original_caption': 'A group of children playing in a yard , a man in the background .',
'semtag_short': 'nan',
'semtag_long': 'nan',
}
```
#### stress
An example of looks as follows:
```json
{
'id': '5818_de_d',
'premise': '女性火の近くダンスをしている',
'hypothesis': '火の近くでダンスをしている女性は一人もいない',
'label': 2, // (contradiction)
'score': 4.0,
'sentence_A_Ja_origin': '女性が火の近くでダンスをしている',
'entailment_label_origin': 2,
'relatedness_score_Ja_origin': 3.700000047683716,
'rephrase_type': 'd',
'case_particles': 'de'
}
```
### Data Fields
#### base
A version adopting the column names of a typical NLI dataset.
| Name | Description |
| -------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
| id | The ids (the same with original SICK) |
| premise | The first sentence in Japanese |
| hypothesis | The second sentence in Japanese |
| label | The entailment label in Japanese |
| score | The relatedness score in the range [1-5] in Japanese |
| premise_en | The first sentence in English |
| hypothesis_en | The second sentence in English |
| label_en | The original entailment label in English |
| score_en | The original relatedness score in the range [1-5] in English |
| semtag_short | The linguistic phenomena tags in Japanese |
| semtag_long | The details of linguistic phenomena tags in Japanese |
| image_ID | The original image in [8K ImageFlickr dataset](https://www.kaggle.com/datasets/adityajn105/flickr8k) |
| original_caption | The original caption in [8K ImageFlickr dataset](https://www.kaggle.com/datasets/adityajn105/flickr8k) |
| corr_entailment_labelAB_En | The corrected entailment label from A to B in English by [(Karouli et al., 2017)](http://vcvpaiva.github.io/includes/pubs/2017-iwcs.pdf) |
| corr_entailment_labelBA_En | The corrected entailment label from B to A in English by [(Karouli et al., 2017)](http://vcvpaiva.github.io/includes/pubs/2017-iwcs.pdf) |
#### stress
| Name | Description |
| --------------------------- | ------------------------------------------------------------------------------------------------- |
| id | Ids (the same with original SICK) |
| premise | The first sentence in Japanese. |
| hypothesis | The second sentence in Japanese. |
| label | The entailment label in Japanese |
| score | The relatedness score in the range [1-5] in Japanese. |
| sentence_A_Ja_origin | The original premise sentences A from the JSICK test set. |
| entailment_label_origin | The original entailment labels |
| relatedness_score_Ja_origin | The original relatedness scores |
| rephrase_type | The type of transformation applied to the syntactic structures of the sentence pairs |
| case_particles | The grammatical particles in Japanese that indicate the function or role of a noun in a sentence. |
### Data Splits
| name | train | validation | test |
| --------------- | ----: | ---------: | ----: |
| base | 4,500 | | 4,927 |
| original | 4,500 | | 4,927 |
| stress | | | 900 |
| stress-original | | | 900 |
### Annotations
To annotate the JSICK dataset, they used the crowdsourcing platform "Lancers" to re-annotate entailment labels and similarity scores for JSICK.
They had six native Japanese speakers as annotators, who were randomly selected from the platform.
The annotators were asked to fully understand the guidelines and provide the same labels as gold labels for ten test questions.
For entailment labels, they adopted annotations that were agreed upon by a majority vote as gold labels and checked whether the majority judgment vote was semantically valid for each example.
For similarity scores, they used the average of the annotation results as gold scores.
The raw annotations with the JSICK dataset are [publicly available](https://github.com/verypluming/JSICK/blob/main/jsick/jsick-all-annotations.tsv).
The average annotation time was 1 minute per pair, and Krippendorff's alpha for the entailment labels was 0.65.
## Additional Information
- [verypluming/JSICK](https://github.com/verypluming/JSICK)
- [Compositional Evaluation on Japanese Textual Entailment and Similarity](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00518/113850/Compositional-Evaluation-on-Japanese-Textual)
- [JSICK: 日本語構成的推論・類似度データセットの構築](https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_4J3GS6f02/_article/-char/ja)
### Licensing Information
CC BY-SA 4.0
### Citation Information
```bibtex
@article{yanaka-mineshima-2022-compositional,
title = "Compositional Evaluation on {J}apanese Textual Entailment and Similarity",
author = "Yanaka, Hitomi and
Mineshima, Koji",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.73",
doi = "10.1162/tacl_a_00518",
pages = "1266--1284",
}
@article{谷中 瞳2021,
title={JSICK: 日本語構成的推論・類似度データセットの構築},
author={谷中 瞳 and 峯島 宏次},
journal={人工知能学会全国大会論文集},
volume={JSAI2021},
number={ },
pages={4J3GS6f02-4J3GS6f02},
year={2021},
doi={10.11517/pjsai.JSAI2021.0_4J3GS6f02}
}
```
### Contributions
Thanks to [Hitomi Yanaka](https://hitomiyanaka.mystrikingly.com/) and [Koji Mineshima](https://abelard.flet.keio.ac.jp/person/minesima/index-j.html) for creating this dataset. |