Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
8.09 kB
import analysis.convex.hull
import data.real.basic
import topology.connected
import topology.path_connected
import topology.algebra.affine
import linear_algebra.dimension
import linear_algebra.affine_space.midpoint
import data.matrix.notation
import analysis.convex.topology
import to_mathlib.topology.misc
/-!
# Ample subsets of real vector spaces
## Implementation notes
The definition of ample subset asks for a vector space structure and a topology on the ambiant type
without any link between those structures, but we will only be using these for finite dimensional
vector spaces with their natural topology.
-/
open set affine_map
open_locale convex matrix
variables {E F : Type*} [add_comm_group F] [module ℝ F] [topological_space F]
variables [add_comm_group E] [module ℝ E] [topological_space E]
/-- A subset of a topological real vector space is ample if the convex hull of each of its
connected components is the full space. -/
def ample_set (s : set F) : Prop :=
βˆ€ x ∈ s, convex_hull ℝ (connected_component_in s x) = univ
/-- images of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.image {s : set E} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L '' s) :=
begin
intros x hx,
rw [L.image_eq_preimage] at hx,
have : L '' connected_component_in s (L.symm x) = connected_component_in (L '' s) x,
{ conv_rhs { rw [← L.apply_symm_apply x] },
exact L.to_homeomorph.image_connected_component_in hx },
rw [← this],
refine (L.to_linear_equiv.to_linear_map.convex_hull_image _).trans _,
rw [h (L.symm x) hx, image_univ],
exact L.to_linear_equiv.to_equiv.range_eq_univ,
end
/-- preimages of ample sets under continuous linear equivalences are ample. -/
lemma ample_set.preimage {s : set F} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L ⁻¹' s) :=
by { rw [← L.image_symm_eq_preimage], exact h.image L.symm }
section lemma_2_13
local notation `Ο€` := submodule.linear_proj_of_is_compl _ _
local attribute [instance, priority 100] topological_add_group.path_connected
lemma is_path_connected_compl_of_is_path_connected_compl_zero [topological_add_group F]
[has_continuous_smul ℝ F] {p q : submodule ℝ F} (hpq : is_compl p q)
(hpc : is_path_connected ({0}ᢜ : set p)) : is_path_connected (qᢜ : set F) :=
begin
rw is_path_connected_iff at ⊒ hpc,
split,
{ rcases hpc.1 with ⟨a, ha⟩,
exact ⟨a, mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) ha⟩ },
{ intros x hx y hy,
have : Ο€ hpq x β‰  0 ∧ Ο€ hpq y β‰  0,
{ split;
intro h;
rw submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq at h;
[exact hx h, exact hy h] },
rcases hpc.2 (Ο€ hpq x) this.1 (Ο€ hpq y) this.2 with βŸ¨Ξ³β‚, hΞ³β‚βŸ©,
let Ξ³β‚‚ := path_connected_space.some_path (Ο€ hpq.symm x) (Ο€ hpq.symm y),
let γ₁' : path (_ : F) _ := γ₁.map continuous_subtype_coe,
let Ξ³β‚‚' : path (_ : F) _ := Ξ³β‚‚.map continuous_subtype_coe,
refine ⟨(γ₁'.add Ξ³β‚‚').cast
(submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq x).symm
(submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq y).symm, _⟩,
intros t,
rw [path.cast_coe, path.add_apply],
change (γ₁ t : F) + (Ξ³β‚‚ t : F) βˆ‰ q,
rw [← submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq, linear_map.map_add,
submodule.linear_proj_of_is_compl_apply_right hpq, add_zero,
submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq],
exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) (hγ₁ t) }
end
lemma mem_span_of_zero_mem_segment {x y : F} (hx : x β‰  0) (h : (0 : F) ∈ [x -[ℝ] y]) :
y ∈ submodule.span ℝ ({x} : set F) :=
begin
rw segment_eq_image at h,
rcases h with ⟨t, ht, htxy⟩,
rw submodule.mem_span_singleton,
dsimp only at htxy,
use (t-1)/t,
have : t β‰  0,
{ intro h,
rw h at htxy,
refine hx _,
simpa using htxy },
rw [← smul_eq_zero_iff_eq' (neg_ne_zero.mpr $ inv_ne_zero this),
smul_add, smul_smul, smul_smul, ← neg_one_mul, mul_assoc, mul_assoc,
inv_mul_cancel this, mul_one, neg_one_smul, add_neg_eq_zero] at htxy,
convert htxy,
ring
end
lemma joined_in_compl_zero_of_not_mem_span [topological_add_group F] [has_continuous_smul ℝ F]
{x y : F} (hx : x β‰  0) (hy : y βˆ‰ submodule.span ℝ ({x} : set F)) :
joined_in ({0}ᢜ : set F) x y :=
begin
refine joined_in.of_line line_map_continuous.continuous_on
(line_map_apply_zero _ _) (line_map_apply_one _ _) _,
rw ← segment_eq_image_line_map,
exact Ξ» t ht (h' : t = 0), (mt (mem_span_of_zero_mem_segment hx) hy) (h' β–Έ ht)
end
lemma is_path_connected_compl_zero_of_two_le_dim [topological_add_group F] [has_continuous_smul ℝ F]
(hdim : 2 ≀ module.rank ℝ F) : is_path_connected ({0}ᢜ : set F) :=
begin
rw is_path_connected_iff,
split,
{ suffices : 0 < module.rank ℝ F,
by rwa dim_pos_iff_exists_ne_zero at this,
exact lt_of_lt_of_le (by norm_num) hdim },
{ intros x hx y hy,
by_cases h : y ∈ submodule.span ℝ ({x} : set F),
{ suffices : βˆƒ z, z βˆ‰ submodule.span ℝ ({x} : set F),
{ rcases this with ⟨z, hzx⟩,
have hzy : z βˆ‰ submodule.span ℝ ({y} : set F),
from Ξ» h', hzx (submodule.mem_span_singleton_trans h' h),
exact (joined_in_compl_zero_of_not_mem_span hx hzx).trans
(joined_in_compl_zero_of_not_mem_span hy hzy).symm },
by_contra h',
push_neg at h',
rw ← submodule.eq_top_iff' at h',
rw [← dim_top ℝ, ← h'] at hdim,
suffices : (2 : cardinal) ≀ 1,
from not_le_of_lt (by norm_num) this,
have := hdim.trans (dim_span_le _),
rwa cardinal.mk_singleton at this },
{ exact joined_in_compl_zero_of_not_mem_span hx h } }
end
lemma is_path_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
{E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
is_path_connected (Eᢜ : set F) :=
begin
rcases E.exists_is_compl with ⟨E', hE'⟩,
refine is_path_connected_compl_of_is_path_connected_compl_zero hE'.symm _,
refine is_path_connected_compl_zero_of_two_le_dim _,
rwa ← (E.quotient_equiv_of_is_compl E' hE').dim_eq
end
lemma is_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
{E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
is_connected (Eᢜ : set F) :=
(is_path_connected_compl_of_two_le_codim hcodim).is_connected
lemma connected_space_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
{E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
connected_space (Eᢜ : set F) :=
is_connected_iff_connected_space.mp (is_connected_compl_of_two_le_codim hcodim)
lemma ample_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F]
{E : submodule ℝ F} (hcodim : 2 ≀ module.rank ℝ (Fβ§ΈE)) :
ample_set (Eᢜ : set F) :=
begin
haveI : connected_space (Eᢜ : set F) := connected_space_compl_of_two_le_codim hcodim,
intros x hx,
have : connected_component_in (↑E)ᢜ x = (↑E)ᢜ,
from is_preconnected.connected_component_in (is_connected_compl_of_two_le_codim hcodim).2 hx,
rw [this, eq_univ_iff_forall],
intro y,
by_cases h : y ∈ E,
{ rcases E.exists_is_compl with ⟨E', hE'⟩,
rw (E.quotient_equiv_of_is_compl E' hE').dim_eq at hcodim,
have hcodim' : 0 < module.rank ℝ E' := lt_of_lt_of_le (by norm_num) hcodim,
rw dim_pos_iff_exists_ne_zero at hcodim',
rcases hcodim' with ⟨z, hz⟩,
have : y ∈ [y+(-z) -[ℝ] y+z],
{ rw ← sub_eq_add_neg,
exact mem_segment_sub_add y z },
refine (convex_convex_hull ℝ (Eᢜ : set F)).segment_subset _ _ this ;
refine subset_convex_hull ℝ (Eᢜ : set F) _;
change _ βˆ‰ E;
rw submodule.add_mem_iff_right _ h;
try {rw submodule.neg_mem_iff};
exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hE'.symm.disjoint) hz },
{ exact subset_convex_hull ℝ (Eᢜ : set F) h }
end
end lemma_2_13