Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Heather Macbeth. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Heather Macbeth | |
-/ | |
import to_mathlib.analysis.cont_diff | |
import analysis.special_functions.trigonometric.deriv | |
/-! # Rotation about an axis, considered as a function in that axis -/ | |
noncomputable theory | |
variables (E : Type*) [inner_product_space โ E] [finite_dimensional โ E] | |
/-- The identification of a finite-dimensional inner product space with its algebraic dual. -/ | |
def to_dual : E โโ[โ] (E โโ[โ] โ) := | |
(inner_product_space.to_dual โ E).to_linear_equiv โชโซโ linear_map.to_continuous_linear_map.symm | |
variables {E} (ฮฉ : alternating_map โ E โ (fin 3)) | |
include E ฮฉ | |
/-- Linear map from `E` to `E โโ[โ] E` constructed from a 3-form `ฮฉ` on `E` and an identification of | |
`E` with its dual. Effectively, the Hodge star operation. (Under appropriate hypotheses it turns | |
out that the image of this map is in `๐ฐ๐ฌ(E)`, the skew-symmetric operators, which can be identified | |
with `ฮยฒE`.) -/ | |
def A : E โโ[โ] (E โโ[โ] E) := | |
begin | |
let z : alternating_map โ E โ (fin 0) โโ[โ] โ := | |
alternating_map.const_linear_equiv_of_is_empty.symm, | |
let y : alternating_map โ E โ (fin 1) โโ[โ] E โโ[โ] โ := | |
(linear_map.llcomp โ E (alternating_map โ E โ (fin 0)) โ z) โโ | |
alternating_map.curry_left_linear_map, | |
let y' : alternating_map โ E โ (fin 1) โโ[โ] E := | |
(linear_map.llcomp โ (alternating_map โ E โ (fin 1)) (E โโ[โ] โ) E (to_dual E).symm) y, | |
let x : alternating_map โ E โ (fin 2) โโ[โ] E โโ[โ] E := | |
(linear_map.llcomp โ E (alternating_map โ E โ (fin 1)) _ y') โโ | |
alternating_map.curry_left_linear_map, | |
exact x โโ ฮฉ.curry_left_linear_map, | |
end | |
lemma A_apply_self (v : E) : A ฮฉ v v = 0 := by simp [A] | |
attribute [irreducible] A | |
/-- The map `A`, upgraded from linear to continuous-linear; useful for calculus. -/ | |
def A' : E โL[โ] (E โL[โ] E) := | |
(โ(linear_map.to_continuous_linear_map : (E โโ[โ] E) โโ[โ] (E โL[โ] E)) | |
โโ (A ฮฉ)).to_continuous_linear_map | |
@[simp] lemma A'_apply (v : E) : A' ฮฉ v = (A ฮฉ v).to_continuous_linear_map := rfl | |
/-- A family of endomorphisms of `E`, parametrized by `E ร โ`. The idea is that for nonzero `v : E` | |
and `t : โ` this endomorphism should be the rotation by the angle `t` about the axis spanned by `v`, | |
although this definition does not itself impose enough conditions to ensure that meaning. -/ | |
def rot (p : E ร โ) : E โL[โ] E := | |
(โ โ p.1).subtypeL โL (orthogonal_projection (โ โ p.1) : E โL[โ] (โ โ p.1)) | |
+ real.cos p.2 โข (โ โ p.1)แฎ.subtypeL โL (orthogonal_projection (โ โ p.1)แฎ : E โL[โ] (โ โ p.1)แฎ) | |
+ real.sin p.2 โข (A ฮฉ p.1).to_continuous_linear_map | |
/-- Alternative form of the construction `rot`, convenient for the smoothness calculation. -/ | |
def rot_aux (p : E ร โ) : E โL[โ] E := | |
real.cos p.2 โข continuous_linear_map.id โ E + | |
((1 - real.cos p.2) โข (โ โ p.1).subtypeL โL (orthogonal_projection (โ โ p.1) : E โL[โ] (โ โ p.1)) | |
+ real.sin p.2 โข (A' ฮฉ p.1)) | |
lemma rot_eq_aux : rot ฮฉ = rot_aux ฮฉ := | |
begin | |
ext1 p, | |
dsimp [rot, rot_aux], | |
rw id_eq_sum_orthogonal_projection_self_orthogonal_complement (โ โ p.1), | |
simp only [smul_add, sub_smul, one_smul], | |
abel, | |
end | |
/-- The map `rot` is smooth on `(E \ {0}) ร โ`. -/ | |
lemma cont_diff_rot {p : E ร โ} (hp : p.1 โ 0) : cont_diff_at โ โค (rot ฮฉ) p := | |
begin | |
simp only [rot_eq_aux], | |
refine (cont_diff_at_snd.cos.smul cont_diff_at_const).add _, | |
refine ((cont_diff_at_const.sub cont_diff_at_snd.cos).smul _).add | |
(cont_diff_at_snd.sin.smul _), | |
{ exact (cont_diff_at_orthogonal_projection_singleton hp).comp _ cont_diff_at_fst }, | |
{ exact (A' ฮฉ).cont_diff.cont_diff_at.comp _ cont_diff_at_fst }, | |
end | |
/-- The map `rot` sends `E ร {0}` to the identity. -/ | |
lemma rot_zero (v : E) : rot ฮฉ (v, 0) = continuous_linear_map.id โ E := | |
begin | |
ext w, | |
simpa [rot] using (eq_sum_orthogonal_projection_self_orthogonal_complement (โ โ v) w).symm, | |
end | |
/-- The map `rot` sends `(v, ฯ)` to a transformation which on `(โ โ v)แฎ` acts as the negation. -/ | |
lemma rot_pi (v : E) {w : E} (hw : w โ (โ โ v)แฎ) : rot ฮฉ (v, real.pi) w = - w := | |
by simp [rot, orthogonal_projection_eq_self_iff.mpr hw, | |
orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero hw] | |
/-- The map `rot` sends `(v, t)` to a transformation preserving `v`. -/ | |
lemma rot_self (p : E ร โ) : rot ฮฉ p p.1 = p.1 := | |
begin | |
have H : โ(orthogonal_projection (โ โ p.1) p.1) = p.1 := | |
orthogonal_projection_eq_self_iff.mpr (submodule.mem_span_singleton_self p.1), | |
simp [rot, A_apply_self, orthogonal_projection_orthogonal_complement_singleton_eq_zero, H], | |
end | |