/- Copyright (c) 2022 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import to_mathlib.analysis.cont_diff import analysis.special_functions.trigonometric.deriv /-! # Rotation about an axis, considered as a function in that axis -/ noncomputable theory variables (E : Type*) [inner_product_space ℝ E] [finite_dimensional ℝ E] /-- The identification of a finite-dimensional inner product space with its algebraic dual. -/ def to_dual : E ≃ₗ[ℝ] (E →ₗ[ℝ] ℝ) := (inner_product_space.to_dual ℝ E).to_linear_equiv ≪≫ₗ linear_map.to_continuous_linear_map.symm variables {E} (Ω : alternating_map ℝ E ℝ (fin 3)) include E Ω /-- Linear map from `E` to `E →ₗ[ℝ] E` constructed from a 3-form `Ω` on `E` and an identification of `E` with its dual. Effectively, the Hodge star operation. (Under appropriate hypotheses it turns out that the image of this map is in `𝔰𝔬(E)`, the skew-symmetric operators, which can be identified with `Λ²E`.) -/ def A : E →ₗ[ℝ] (E →ₗ[ℝ] E) := begin let z : alternating_map ℝ E ℝ (fin 0) ≃ₗ[ℝ] ℝ := alternating_map.const_linear_equiv_of_is_empty.symm, let y : alternating_map ℝ E ℝ (fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ := (linear_map.llcomp ℝ E (alternating_map ℝ E ℝ (fin 0)) ℝ z) ∘ₗ alternating_map.curry_left_linear_map, let y' : alternating_map ℝ E ℝ (fin 1) →ₗ[ℝ] E := (linear_map.llcomp ℝ (alternating_map ℝ E ℝ (fin 1)) (E →ₗ[ℝ] ℝ) E (to_dual E).symm) y, let x : alternating_map ℝ E ℝ (fin 2) →ₗ[ℝ] E →ₗ[ℝ] E := (linear_map.llcomp ℝ E (alternating_map ℝ E ℝ (fin 1)) _ y') ∘ₗ alternating_map.curry_left_linear_map, exact x ∘ₗ Ω.curry_left_linear_map, end lemma A_apply_self (v : E) : A Ω v v = 0 := by simp [A] attribute [irreducible] A /-- The map `A`, upgraded from linear to continuous-linear; useful for calculus. -/ def A' : E →L[ℝ] (E →L[ℝ] E) := (↑(linear_map.to_continuous_linear_map : (E →ₗ[ℝ] E) ≃ₗ[ℝ] (E →L[ℝ] E)) ∘ₗ (A Ω)).to_continuous_linear_map @[simp] lemma A'_apply (v : E) : A' Ω v = (A Ω v).to_continuous_linear_map := rfl /-- A family of endomorphisms of `E`, parametrized by `E × ℝ`. The idea is that for nonzero `v : E` and `t : ℝ` this endomorphism should be the rotation by the angle `t` about the axis spanned by `v`, although this definition does not itself impose enough conditions to ensure that meaning. -/ def rot (p : E × ℝ) : E →L[ℝ] E := (ℝ ∙ p.1).subtypeL ∘L (orthogonal_projection (ℝ ∙ p.1) : E →L[ℝ] (ℝ ∙ p.1)) + real.cos p.2 • (ℝ ∙ p.1)ᗮ.subtypeL ∘L (orthogonal_projection (ℝ ∙ p.1)ᗮ : E →L[ℝ] (ℝ ∙ p.1)ᗮ) + real.sin p.2 • (A Ω p.1).to_continuous_linear_map /-- Alternative form of the construction `rot`, convenient for the smoothness calculation. -/ def rot_aux (p : E × ℝ) : E →L[ℝ] E := real.cos p.2 • continuous_linear_map.id ℝ E + ((1 - real.cos p.2) • (ℝ ∙ p.1).subtypeL ∘L (orthogonal_projection (ℝ ∙ p.1) : E →L[ℝ] (ℝ ∙ p.1)) + real.sin p.2 • (A' Ω p.1)) lemma rot_eq_aux : rot Ω = rot_aux Ω := begin ext1 p, dsimp [rot, rot_aux], rw id_eq_sum_orthogonal_projection_self_orthogonal_complement (ℝ ∙ p.1), simp only [smul_add, sub_smul, one_smul], abel, end /-- The map `rot` is smooth on `(E \ {0}) × ℝ`. -/ lemma cont_diff_rot {p : E × ℝ} (hp : p.1 ≠ 0) : cont_diff_at ℝ ⊤ (rot Ω) p := begin simp only [rot_eq_aux], refine (cont_diff_at_snd.cos.smul cont_diff_at_const).add _, refine ((cont_diff_at_const.sub cont_diff_at_snd.cos).smul _).add (cont_diff_at_snd.sin.smul _), { exact (cont_diff_at_orthogonal_projection_singleton hp).comp _ cont_diff_at_fst }, { exact (A' Ω).cont_diff.cont_diff_at.comp _ cont_diff_at_fst }, end /-- The map `rot` sends `E × {0}` to the identity. -/ lemma rot_zero (v : E) : rot Ω (v, 0) = continuous_linear_map.id ℝ E := begin ext w, simpa [rot] using (eq_sum_orthogonal_projection_self_orthogonal_complement (ℝ ∙ v) w).symm, end /-- The map `rot` sends `(v, π)` to a transformation which on `(ℝ ∙ v)ᗮ` acts as the negation. -/ lemma rot_pi (v : E) {w : E} (hw : w ∈ (ℝ ∙ v)ᗮ) : rot Ω (v, real.pi) w = - w := by simp [rot, orthogonal_projection_eq_self_iff.mpr hw, orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero hw] /-- The map `rot` sends `(v, t)` to a transformation preserving `v`. -/ lemma rot_self (p : E × ℝ) : rot Ω p p.1 = p.1 := begin have H : ↑(orthogonal_projection (ℝ ∙ p.1) p.1) = p.1 := orthogonal_projection_eq_self_iff.mpr (submodule.mem_span_singleton_self p.1), simp [rot, A_apply_self, orthogonal_projection_orthogonal_complement_singleton_eq_zero, H], end