Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,913 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
/-
Copyright (c) 2022 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import to_mathlib.analysis.cont_diff
import analysis.special_functions.trigonometric.deriv
/-! # Rotation about an axis, considered as a function in that axis -/
noncomputable theory
variables (E : Type*) [inner_product_space โ E] [finite_dimensional โ E]
/-- The identification of a finite-dimensional inner product space with its algebraic dual. -/
def to_dual : E โโ[โ] (E โโ[โ] โ) :=
(inner_product_space.to_dual โ E).to_linear_equiv โชโซโ linear_map.to_continuous_linear_map.symm
variables {E} (ฮฉ : alternating_map โ E โ (fin 3))
include E ฮฉ
/-- Linear map from `E` to `E โโ[โ] E` constructed from a 3-form `ฮฉ` on `E` and an identification of
`E` with its dual. Effectively, the Hodge star operation. (Under appropriate hypotheses it turns
out that the image of this map is in `๐ฐ๐ฌ(E)`, the skew-symmetric operators, which can be identified
with `ฮยฒE`.) -/
def A : E โโ[โ] (E โโ[โ] E) :=
begin
let z : alternating_map โ E โ (fin 0) โโ[โ] โ :=
alternating_map.const_linear_equiv_of_is_empty.symm,
let y : alternating_map โ E โ (fin 1) โโ[โ] E โโ[โ] โ :=
(linear_map.llcomp โ E (alternating_map โ E โ (fin 0)) โ z) โโ
alternating_map.curry_left_linear_map,
let y' : alternating_map โ E โ (fin 1) โโ[โ] E :=
(linear_map.llcomp โ (alternating_map โ E โ (fin 1)) (E โโ[โ] โ) E (to_dual E).symm) y,
let x : alternating_map โ E โ (fin 2) โโ[โ] E โโ[โ] E :=
(linear_map.llcomp โ E (alternating_map โ E โ (fin 1)) _ y') โโ
alternating_map.curry_left_linear_map,
exact x โโ ฮฉ.curry_left_linear_map,
end
lemma A_apply_self (v : E) : A ฮฉ v v = 0 := by simp [A]
attribute [irreducible] A
/-- The map `A`, upgraded from linear to continuous-linear; useful for calculus. -/
def A' : E โL[โ] (E โL[โ] E) :=
(โ(linear_map.to_continuous_linear_map : (E โโ[โ] E) โโ[โ] (E โL[โ] E))
โโ (A ฮฉ)).to_continuous_linear_map
@[simp] lemma A'_apply (v : E) : A' ฮฉ v = (A ฮฉ v).to_continuous_linear_map := rfl
/-- A family of endomorphisms of `E`, parametrized by `E ร โ`. The idea is that for nonzero `v : E`
and `t : โ` this endomorphism should be the rotation by the angle `t` about the axis spanned by `v`,
although this definition does not itself impose enough conditions to ensure that meaning. -/
def rot (p : E ร โ) : E โL[โ] E :=
(โ โ p.1).subtypeL โL (orthogonal_projection (โ โ p.1) : E โL[โ] (โ โ p.1))
+ real.cos p.2 โข (โ โ p.1)แฎ.subtypeL โL (orthogonal_projection (โ โ p.1)แฎ : E โL[โ] (โ โ p.1)แฎ)
+ real.sin p.2 โข (A ฮฉ p.1).to_continuous_linear_map
/-- Alternative form of the construction `rot`, convenient for the smoothness calculation. -/
def rot_aux (p : E ร โ) : E โL[โ] E :=
real.cos p.2 โข continuous_linear_map.id โ E +
((1 - real.cos p.2) โข (โ โ p.1).subtypeL โL (orthogonal_projection (โ โ p.1) : E โL[โ] (โ โ p.1))
+ real.sin p.2 โข (A' ฮฉ p.1))
lemma rot_eq_aux : rot ฮฉ = rot_aux ฮฉ :=
begin
ext1 p,
dsimp [rot, rot_aux],
rw id_eq_sum_orthogonal_projection_self_orthogonal_complement (โ โ p.1),
simp only [smul_add, sub_smul, one_smul],
abel,
end
/-- The map `rot` is smooth on `(E \ {0}) ร โ`. -/
lemma cont_diff_rot {p : E ร โ} (hp : p.1 โ 0) : cont_diff_at โ โค (rot ฮฉ) p :=
begin
simp only [rot_eq_aux],
refine (cont_diff_at_snd.cos.smul cont_diff_at_const).add _,
refine ((cont_diff_at_const.sub cont_diff_at_snd.cos).smul _).add
(cont_diff_at_snd.sin.smul _),
{ exact (cont_diff_at_orthogonal_projection_singleton hp).comp _ cont_diff_at_fst },
{ exact (A' ฮฉ).cont_diff.cont_diff_at.comp _ cont_diff_at_fst },
end
/-- The map `rot` sends `E ร {0}` to the identity. -/
lemma rot_zero (v : E) : rot ฮฉ (v, 0) = continuous_linear_map.id โ E :=
begin
ext w,
simpa [rot] using (eq_sum_orthogonal_projection_self_orthogonal_complement (โ โ v) w).symm,
end
/-- The map `rot` sends `(v, ฯ)` to a transformation which on `(โ โ v)แฎ` acts as the negation. -/
lemma rot_pi (v : E) {w : E} (hw : w โ (โ โ v)แฎ) : rot ฮฉ (v, real.pi) w = - w :=
by simp [rot, orthogonal_projection_eq_self_iff.mpr hw,
orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero hw]
/-- The map `rot` sends `(v, t)` to a transformation preserving `v`. -/
lemma rot_self (p : E ร โ) : rot ฮฉ p p.1 = p.1 :=
begin
have H : โ(orthogonal_projection (โ โ p.1) p.1) = p.1 :=
orthogonal_projection_eq_self_iff.mpr (submodule.mem_span_singleton_self p.1),
simp [rot, A_apply_self, orthogonal_projection_orthogonal_complement_singleton_eq_zero, H],
end
|