Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import local.relation | |
import global.one_jet_sec | |
import global.smooth_embedding | |
import to_mathlib.topology.algebra.module | |
/-! | |
# First order partial differential relations for maps between manifolds | |
This file contains fundamental definitions about first order partial differential relations | |
for maps between manifolds and relating them to the local story of first order partial differential | |
relations for maps between vector spaces. | |
Given manifolds `M` and `M'` modelled on `I` and `I'`, a first order partial differential relation | |
for maps from `M` to `M'` is a set in the 1-jet bundle J¹(M, M'), also known as | |
`one_jet_bundle I M I' M'`. | |
-/ | |
noncomputable theory | |
open set function filter charted_space smooth_manifold_with_corners | |
open_locale topological_space manifold | |
section defs | |
/-! ## Fundamental definitions -/ | |
variables | |
{E : Type*} [normed_add_comm_group E] [normed_space ℝ E] | |
{H : Type*} [topological_space H] (I : model_with_corners ℝ E H) | |
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] | |
{E' : Type*} [normed_add_comm_group E'] [normed_space ℝ E'] | |
{H' : Type*} [topological_space H'] (I' : model_with_corners ℝ E' H') | |
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] | |
{F : Type*} [normed_add_comm_group F] [normed_space ℝ F] | |
{G : Type*} [topological_space G] (J : model_with_corners ℝ F G) | |
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N] | |
{F' : Type*} [normed_add_comm_group F'] [normed_space ℝ F'] | |
{G' : Type*} [topological_space G'] (J' : model_with_corners ℝ F' G') | |
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N'] | |
local notation `TM` := tangent_space I | |
local notation `TM'` := tangent_space I' | |
/-- A first-order differential relation for maps from `M` to `N` is a subset of the 1-jet bundle. -/ | |
@[reducible] def rel_mfld := set (one_jet_bundle I M I' M') | |
variables {I M I' M'} {R : rel_mfld I M I' M'} | |
/-- A solution to a relation `R`. -/ | |
@[ext] structure sol (R : rel_mfld I M I' M') := | |
(f : M → M') | |
(f_diff : cont_mdiff I I' ⊤ f) | |
(is_sol : ∀ x, one_jet_ext I I' f x ∈ R) | |
/-- A formal solution to a local relation `R` over a set `U`. -/ | |
@[ext] structure formal_sol (R : rel_mfld I M I' M') extends | |
to_one_jet_sec : one_jet_sec I M I' M' := | |
(is_sol' : ∀ x : M, to_one_jet_sec x ∈ R) | |
instance (R : rel_mfld I M I' M') : | |
has_coe_to_fun (formal_sol R) (λ S, M → one_jet_bundle I M I' M') := | |
⟨λ F, F.to_one_jet_sec⟩ | |
lemma formal_sol.is_sol (F : formal_sol R) : ∀ x, F x ∈ R := | |
F.is_sol' | |
/-- part of the construction of the slice `R(σ,p)`. -/ | |
def rel_mfld.preslice (R : rel_mfld I M I' M') (σ : one_jet_bundle I M I' M') | |
(p : dual_pair' $ TM σ.1.1) : set (TM' σ.1.2) := | |
{w : TM' σ.1.2 | one_jet_bundle.mk σ.1.1 σ.1.2 (p.update σ.2 w) ∈ R} | |
/-- For some reason `rw [mem_set_of_eq]` fails after unfolding `preslice`, | |
but rewriting with this lemma works. -/ | |
lemma mem_preslice {R : rel_mfld I M I' M'} {σ : one_jet_bundle I M I' M'} | |
{p : dual_pair' $ TM σ.1.1} {w : TM' σ.1.2} : | |
w ∈ R.preslice σ p ↔ one_jet_bundle.mk σ.1.1 σ.1.2 (p.update σ.2 w) ∈ R := | |
iff.rfl | |
/-- the slice `R(σ,p)`. -/ | |
def rel_mfld.slice (R : rel_mfld I M I' M') (σ : one_jet_bundle I M I' M') | |
(p : dual_pair' $ TM σ.1.1) : set (TM' σ.1.2) := | |
connected_component_in (R.preslice σ p) (σ.2 p.v) | |
def rel_mfld.ample (R : rel_mfld I M I' M') : Prop := | |
∀ ⦃σ : one_jet_bundle I M I' M'⦄ (p : dual_pair' $ TM σ.1.1), σ ∈ R → ample_set (R.slice σ p) | |
/-- A family of formal solutions indexed by manifold `N` is a function from `N` into formal | |
solutions in such a way that the function is smooth as a function of all arguments. -/ | |
structure family_formal_sol (R : rel_mfld I M I' M') extends | |
to_family_one_jet_sec : family_one_jet_sec I M I' M' J N := | |
(is_sol' : ∀ (t : N) (x : M), to_family_one_jet_sec t x ∈ R) | |
instance : has_coe_to_fun (family_formal_sol J N R) (λ S, N → formal_sol R) := | |
⟨λ S t, ⟨S.to_family_one_jet_sec t, S.is_sol' t⟩⟩ | |
namespace family_formal_sol | |
variables {J N J' N'} | |
/-- Reindex a family along a smooth function `f`. -/ | |
def reindex (S : family_formal_sol J' N' R) (f : C^∞⟮J, N; J', N'⟯) : | |
family_formal_sol J N R := | |
⟨S.to_family_one_jet_sec.reindex f, λ t, S.is_sol' (f t)⟩ | |
end family_formal_sol | |
/-- A homotopy of formal solutions is a family indexed by `ℝ` -/ | |
@[reducible] def htpy_formal_sol (R : rel_mfld I M I' M') := family_formal_sol 𝓘(ℝ, ℝ) ℝ R | |
/-- A relation `R` satisfies the (non-parametric) h-principle if all its formal solutions are | |
homotopic to a holonomic one. -/ | |
def rel_mfld.satisfies_h_principle (R : rel_mfld I M I' M') : Prop := | |
∀ 𝓕₀ : formal_sol R, ∃ 𝓕 : htpy_formal_sol R, 𝓕 0 = 𝓕₀ ∧ (𝓕 1).to_one_jet_sec.is_holonomic | |
/-- A relation `R` satisfies the parametric h-principle w.r.t. manifold `N` if for every family of | |
formal solutions indexed by a manifold with boundary `N` that is holonomic near the boundary `N` is | |
homotopic to a holonomic one, in such a way that the homotopy is constant near the boundary of `N`. | |
-/ | |
def rel_mfld.satisfies_h_principle_with (R : rel_mfld I M I' M') : Prop := | |
∀ 𝓕₀ : family_formal_sol J N R, (∀ᶠ x in 𝓝ˢ (boundary J N), (𝓕₀ x).to_one_jet_sec.is_holonomic) → | |
∃ 𝓕 : family_formal_sol (𝓘(ℝ, ℝ).prod J) (ℝ × N) R, | |
𝓕.reindex ((cont_mdiff_map.const 0).prod_mk cont_mdiff_map.id) = 𝓕₀ ∧ | |
(∀ᶠ x in 𝓝ˢ (boundary J N), ∀ t : ℝ, 𝓕 (t, x) = 𝓕₀ x) ∧ | |
∀ x, (𝓕 (1, x)).to_one_jet_sec.is_holonomic | |
end defs | |
section smooth_open_embedding | |
/-! ## Localisation of one jet sections | |
In order to use the local story of convex integration, we need a way to turn a | |
one jet section into local ones, then apply the local story to build a homotopy of one jets section | |
and transfer back to the original manifolds. There is a dissymetry here. First we use | |
maps from whole vector spaces to open sets in manifold. And also one jet sections are carried | |
from manifold to vector spaces one at a time, but then the return journey is about a homotopy | |
of one jet sections. | |
The global manifolds are called `M` and `N'`. We don't assume the local ones are vector spaces, | |
there are manifolds `X` and `Y` that will be vector spaces in the next section. | |
Note: Patrick doesn't know whether we really need to allow different `E`, `H` and `I` for | |
manifolds `X` and `M` (and for `Y` and `N`). We use maximal generality just in case. | |
-/ | |
variables | |
{EX : Type*} [normed_add_comm_group EX] [normed_space ℝ EX] | |
{HX : Type*} [topological_space HX] {IX : model_with_corners ℝ EX HX} | |
{X : Type*} [topological_space X] [charted_space HX X] [smooth_manifold_with_corners IX X] | |
{EM : Type*} [normed_add_comm_group EM] [normed_space ℝ EM] | |
{HM : Type*} [topological_space HM] {IM : model_with_corners ℝ EM HM} | |
{M : Type*} [topological_space M] [charted_space HM M] [smooth_manifold_with_corners IM M] | |
{EY : Type*} [normed_add_comm_group EY] [normed_space ℝ EY] | |
{HY : Type*} [topological_space HY] {IY : model_with_corners ℝ EY HY} | |
{Y : Type*} [topological_space Y] [charted_space HY Y] [smooth_manifold_with_corners IY Y] | |
{EN : Type*} [normed_add_comm_group EN] [normed_space ℝ EN] | |
{HN : Type*} [topological_space HN] {IN : model_with_corners ℝ EN HN} | |
{N : Type*} [topological_space N] [charted_space HN N] [smooth_manifold_with_corners IN N] | |
(F : one_jet_sec IM M IN N) | |
(g : open_smooth_embedding IY Y IN N) (h : open_smooth_embedding IX X IM M) | |
{R : rel_mfld IM M IN N} | |
local notation `TM` := tangent_space IM | |
local notation `TN` := tangent_space IN | |
local notation `TX` := tangent_space IX | |
local notation `TY` := tangent_space IY | |
/-- Transfer map between one jet bundles induced by open smooth embedding into the source and | |
targets. -/ | |
@[simps fst_fst fst_snd] | |
def one_jet_bundle.transfer : one_jet_bundle IX X IY Y → one_jet_bundle IM M IN N := | |
λ σ, ⟨⟨h σ.1.1, g σ.1.2⟩, | |
((g.fderiv σ.1.2 : TY σ.1.2 →L[ℝ] TN (g σ.1.2)).comp σ.2).comp | |
((h.fderiv σ.1.1).symm : TM (h σ.1.1) →L[ℝ] TX σ.1.1)⟩ | |
lemma one_jet_bundle.continuous_transfer : continuous (one_jet_bundle.transfer g h) := | |
sorry | |
-- do we need this? | |
lemma one_jet_bundle.smooth_transfer : smooth ((IX.prod IY).prod 𝓘(ℝ, EX →L[ℝ] EY)) | |
((IM.prod IN).prod 𝓘(ℝ, EM →L[ℝ] EN)) (one_jet_bundle.transfer g h) := | |
sorry | |
/-- localize a relation -/ | |
def rel_mfld.localize (R : rel_mfld IM M IN N) : rel_mfld IX X IY Y := | |
one_jet_bundle.transfer g h ⁻¹' R | |
open basic_smooth_vector_bundle_core | |
/-- Localize a one-jet section in two open embeddings. | |
It maps `x` to `(x, y, (D_y(g))⁻¹ ∘ F_φ(h x) ∘ D_x(h))` where `y : M := g⁻¹(F_{bs}(h x))`. -/ | |
@[simps] def one_jet_sec.localize (hF : range (F.bs ∘ h) ⊆ range g) : | |
one_jet_sec IX X IY Y := | |
{ bs := λ x, g.inv_fun (F.bs $ h x), | |
ϕ := λ x, let y := g.inv_fun (F.bs $ h x) in | |
(↑(g.fderiv y).symm : TN (g y) →L[ℝ] TY y) ∘L ((F $ h x).2 ∘L (h.fderiv x : TX x →L[ℝ] TM (h x))), | |
smooth' := begin | |
simp_rw [h.fderiv_coe, g.fderiv_symm_coe, | |
mfderiv_congr_point (g.right_inv (hF $ mem_range_self _))], | |
refine smooth.one_jet_comp IN (λ x', F.bs (h x')) _ _, | |
{ exact λ x, (g.smooth_at_inv $ hF $ mem_range_self x).one_jet_ext.comp _ | |
(F.smooth_bs.comp h.smooth_to).cont_mdiff_at }, | |
apply smooth.one_jet_comp IM h (F.smooth_eta.comp h.smooth_to) h.smooth_to.one_jet_ext | |
end } | |
lemma transfer_localize (hF : range (F.bs ∘ h) ⊆ range g) (x : X) : | |
(F.localize g h hF x).transfer g h = F (h x) := | |
begin | |
rw [one_jet_sec.coe_apply, one_jet_sec.localize_bs, one_jet_sec.localize_ϕ, | |
one_jet_bundle.transfer], | |
dsimp only, | |
ext, | |
{ refl }, | |
{ simp_rw [g.right_inv (hF $ mem_range_self x), function.comp_apply, F.bs_eq] }, | |
{ apply heq_of_eq, dsimp only, ext v, | |
simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe, | |
continuous_linear_equiv.apply_symm_apply] }, | |
end | |
lemma one_jet_sec.localize_bs_fun (hF : range (F.bs ∘ h) ⊆ range g) : | |
(F.localize g h hF).bs = g.inv_fun ∘ F.bs ∘ h := | |
rfl | |
lemma one_jet_sec.localize_mem_iff (hF : range (F.bs ∘ h) ⊆ range g) {x : X} : | |
F.localize g h hF x ∈ R.localize g h ↔ F (h x) ∈ R := | |
by rw [rel_mfld.localize, mem_preimage, transfer_localize F g h hF] | |
lemma rel_mfld.ample.localize (hR : R.ample) : (R.localize g h).ample := | |
begin | |
intros x p hx, | |
have : (rel_mfld.localize g h R).slice x p = | |
(g.fderiv x.1.2).symm '' R.slice (x.transfer g h) (p.map (h.fderiv x.1.1)), | |
{ simp_rw [rel_mfld.slice, rel_mfld.localize], | |
symmetry, | |
refine ((g.fderiv x.1.2).symm.to_homeomorph.image_connected_component_in _).trans _, | |
{ rw [mem_preslice, dual_pair'.update_self], exact hx }, | |
simp_rw [continuous_linear_equiv.coe_to_homeomorph, | |
continuous_linear_equiv.image_symm_eq_preimage], | |
congr' 1, | |
{ ext v, simp_rw [mem_preimage, mem_preslice, mem_preimage], | |
dsimp only [one_jet_bundle.transfer, one_jet_bundle_mk_fst, one_jet_bundle_mk_snd], | |
simp_rw [p.map_update_comp_right, ← p.update_comp_left, continuous_linear_equiv.coe_coe, | |
one_jet_bundle.mk] }, | |
{ dsimp only [one_jet_bundle.transfer], | |
simp_rw [continuous_linear_map.comp_apply, continuous_linear_equiv.coe_coe, p.map_v, | |
continuous_linear_equiv.symm_apply_apply] } }, | |
rw [this], | |
exact (hR _ hx).image (g.fderiv x.1.2).symm | |
end | |
lemma is_holonomic_at_localize_iff (hF : range (F.bs ∘ h) ⊆ range g) (x : X) : | |
(F.localize g h hF).is_holonomic_at x ↔ F.is_holonomic_at (h x) := | |
begin | |
have : mfderiv IX IY (g.inv_fun ∘ F.bs ∘ h) x = | |
(g.fderiv (g.inv_fun (F.bs (h x)))).symm.to_continuous_linear_map.comp | |
((mfderiv IM IN F.bs (h x)).comp (h.fderiv x).to_continuous_linear_map), | |
{ have h1 : mdifferentiable_at IN IY g.inv_fun (F.bs (h x)) := | |
(g.smooth_at_inv $ hF $ mem_range_self _).mdifferentiable_at le_top, | |
have h2 : mdifferentiable_at IM IN F.bs (h x) := | |
F.smooth_bs.smooth_at.mdifferentiable_at le_top, | |
have h3 : mdifferentiable_at IX IM h x := | |
h.smooth_to.smooth_at.mdifferentiable_at le_top, | |
rw [mfderiv_comp x h1 (h2.comp x h3), mfderiv_comp x h2 h3, | |
← g.fderiv_symm_coe' (hF $ mem_range_self _)], | |
refl, }, | |
simp_rw [one_jet_sec.is_holonomic_at], | |
rw [mfderiv_congr (F.localize_bs_fun g h hF), one_jet_sec.snd_eq, F.localize_ϕ, this], | |
simp_rw [← continuous_linear_equiv.coe_def_rev, | |
continuous_linear_equiv.cancel_left, continuous_linear_equiv.cancel_right] | |
end | |
/-- Un-localize a homotopy of one-jet sections from two open embeddings. -/ | |
-- Note(F): this is only well-defined on `univ × range h`, right? | |
def htpy_one_jet_sec.unlocalize (F : htpy_one_jet_sec IX X IY Y) : htpy_one_jet_sec IM M IN N := | |
{ bs := λ t m , g $ (F t).bs (h.inv_fun m), | |
ϕ := λ t m, (g.fderiv $ (F t).bs (h.inv_fun m)).to_continuous_linear_map ∘L | |
((F t $ h.inv_fun m).2 ∘L (h.fderiv $ h.inv_fun m).symm.to_continuous_linear_map), | |
smooth' := sorry } | |
lemma one_jet_sec.unlocalize_localize (G : htpy_one_jet_sec IX X IY Y) | |
(hF : range (F.bs ∘ h) ⊆ range g) | |
(hFG : G 0 = F.localize g h hF) : G.unlocalize g h 0 = F := | |
sorry | |
/-- Localize a formal solution. -/ | |
def transfer (hF : range (F.bs ∘ h) ⊆ range g) (h2F : ∀ x, F (h x) ∈ R) : | |
formal_sol (R.localize g h) := | |
⟨F.localize g h hF, λ x, (F.localize_mem_iff g h hF).mpr $ h2F x⟩ | |
end smooth_open_embedding | |
section loc | |
/-! ## Link with the local story | |
Now we really bridge the gap all the way to vector spaces. | |
-/ | |
variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] | |
variables {E' : Type*} [normed_add_comm_group E'] [normed_space ℝ E'] | |
/-- For maps between vector spaces, `one_jet_ext` is the obvious thing. -/ | |
@[simp] theorem one_jet_ext_eq_fderiv {f : E → E'} {x : E} : | |
one_jet_ext 𝓘(ℝ, E) 𝓘(ℝ, E') f x = ⟨(x, f x), fderiv ℝ f x⟩ := | |
by { rw ← mfderiv_eq_fderiv, refl } | |
/-- Convert a 1-jet section between vector spaces seen as manifold to a 1-jet section | |
between those vector spaces. -/ | |
def one_jet_sec.loc (F : one_jet_sec 𝓘(ℝ, E) E 𝓘(ℝ, E') E') : rel_loc.jet_sec E E' := | |
{ f := F.bs, | |
f_diff := sorry, | |
φ := λ x, (F x).2, | |
φ_diff := sorry } | |
lemma one_jet_sec.loc_hol_at_iff (F : one_jet_sec 𝓘(ℝ, E) E 𝓘(ℝ, E') E') (x : E) : | |
F.loc.is_holonomic_at x ↔ F.is_holonomic_at x := | |
begin | |
dsimp only [one_jet_sec.is_holonomic_at], | |
rw mfderiv_eq_fderiv, | |
exact iff.rfl | |
end | |
/-- Turns a relation between `E` and `E'` seen as manifolds into a relation between them | |
seen as vector spaces. One annoying bit is `equiv.prod_assoc E E' $ E →L[ℝ] E'` that is needed | |
to reassociate a product of types. -/ | |
def rel_mfld.rel_loc (R : rel_mfld 𝓘(ℝ, E) E 𝓘(ℝ, E') E') : rel_loc E E' := | |
(equiv.prod_assoc _ _ _) '' ((one_jet_bundle_model_space_homeomorph E 𝓘(ℝ, E) E' 𝓘(ℝ, E')) '' R) | |
lemma ample_of_ample (R : rel_mfld 𝓘(ℝ, E) E 𝓘(ℝ, E') E') (hR : R.ample) : | |
R.rel_loc.is_ample := | |
sorry | |
lemma is_open_of_is_open (R : rel_mfld 𝓘(ℝ, E) E 𝓘(ℝ, E') E') (hR : is_open R) : | |
is_open R.rel_loc := | |
sorry | |
end loc | |