Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro | |
-/ | |
import topology.tactic | |
/-! | |
# Ordering on topologies and (co)induced topologies | |
Topologies on a fixed type `α` are ordered, by reverse inclusion. | |
That is, for topologies `t₁` and `t₂` on `α`, we write `t₁ ≤ t₂` | |
if every set open in `t₂` is also open in `t₁`. | |
(One also calls `t₁` finer than `t₂`, and `t₂` coarser than `t₁`.) | |
Any function `f : α → β` induces | |
`induced f : topological_space β → topological_space α` | |
and `coinduced f : topological_space α → topological_space β`. | |
Continuity, the ordering on topologies and (co)induced topologies are | |
related as follows: | |
* The identity map (α, t₁) → (α, t₂) is continuous iff t₁ ≤ t₂. | |
* A map f : (α, t) → (β, u) is continuous | |
iff t ≤ induced f u (`continuous_iff_le_induced`) | |
iff coinduced f t ≤ u (`continuous_iff_coinduced_le`). | |
Topologies on α form a complete lattice, with ⊥ the discrete topology | |
and ⊤ the indiscrete topology. | |
For a function f : α → β, (coinduced f, induced f) is a Galois connection | |
between topologies on α and topologies on β. | |
## Implementation notes | |
There is a Galois insertion between topologies on α (with the inclusion ordering) | |
and all collections of sets in α. The complete lattice structure on topologies | |
on α is defined as the reverse of the one obtained via this Galois insertion. | |
## Tags | |
finer, coarser, induced topology, coinduced topology | |
-/ | |
open set filter classical | |
open_locale classical topological_space filter | |
universes u v w | |
namespace topological_space | |
variables {α : Type u} | |
/-- The open sets of the least topology containing a collection of basic sets. -/ | |
inductive generate_open (g : set (set α)) : set α → Prop | |
| basic : ∀s∈g, generate_open s | |
| univ : generate_open univ | |
| inter : ∀s t, generate_open s → generate_open t → generate_open (s ∩ t) | |
| sUnion : ∀k, (∀s∈k, generate_open s) → generate_open (⋃₀ k) | |
/-- The smallest topological space containing the collection `g` of basic sets -/ | |
def generate_from (g : set (set α)) : topological_space α := | |
{ is_open := generate_open g, | |
is_open_univ := generate_open.univ, | |
is_open_inter := generate_open.inter, | |
is_open_sUnion := generate_open.sUnion } | |
lemma is_open_generate_from_of_mem {g : set (set α)} {s : set α} (hs : s ∈ g) : | |
@is_open _ (generate_from g) s := | |
generate_open.basic s hs | |
lemma nhds_generate_from {g : set (set α)} {a : α} : | |
@nhds α (generate_from g) a = (⨅s∈{s | a ∈ s ∧ s ∈ g}, 𝓟 s) := | |
by rw nhds_def; exact le_antisymm | |
(binfi_mono $ λ s ⟨as, sg⟩, ⟨as, generate_open.basic _ sg⟩) | |
(le_infi $ assume s, le_infi $ assume ⟨as, hs⟩, | |
begin | |
revert as, clear_, induction hs, | |
case generate_open.basic : s hs | |
{ exact assume as, infi_le_of_le s $ infi_le _ ⟨as, hs⟩ }, | |
case generate_open.univ | |
{ rw [principal_univ], | |
exact assume _, le_top }, | |
case generate_open.inter : s t hs' ht' hs ht | |
{ exact assume ⟨has, hat⟩, calc _ ≤ 𝓟 s ⊓ 𝓟 t : le_inf (hs has) (ht hat) | |
... = _ : inf_principal }, | |
case generate_open.sUnion : k hk' hk | |
{ exact λ ⟨t, htk, hat⟩, calc _ ≤ 𝓟 t : hk t htk hat | |
... ≤ _ : le_principal_iff.2 $ subset_sUnion_of_mem htk } | |
end) | |
lemma tendsto_nhds_generate_from {β : Type*} {m : α → β} {f : filter α} {g : set (set β)} {b : β} | |
(h : ∀s∈g, b ∈ s → m ⁻¹' s ∈ f) : tendsto m f (@nhds β (generate_from g) b) := | |
by rw [nhds_generate_from]; exact | |
(tendsto_infi.2 $ assume s, tendsto_infi.2 $ assume ⟨hbs, hsg⟩, tendsto_principal.2 $ h s hsg hbs) | |
/-- Construct a topology on α given the filter of neighborhoods of each point of α. -/ | |
protected def mk_of_nhds (n : α → filter α) : topological_space α := | |
{ is_open := λs, ∀a∈s, s ∈ n a, | |
is_open_univ := assume x h, univ_mem, | |
is_open_inter := assume s t hs ht x ⟨hxs, hxt⟩, inter_mem (hs x hxs) (ht x hxt), | |
is_open_sUnion := assume s hs a ⟨x, hx, hxa⟩, | |
mem_of_superset (hs x hx _ hxa) (set.subset_sUnion_of_mem hx) } | |
lemma nhds_mk_of_nhds (n : α → filter α) (a : α) | |
(h₀ : pure ≤ n) (h₁ : ∀{a s}, s ∈ n a → ∃ t ∈ n a, t ⊆ s ∧ ∀a' ∈ t, s ∈ n a') : | |
@nhds α (topological_space.mk_of_nhds n) a = n a := | |
begin | |
letI := topological_space.mk_of_nhds n, | |
refine le_antisymm (assume s hs, _) (assume s hs, _), | |
{ have h₀ : {b | s ∈ n b} ⊆ s := assume b hb, mem_pure.1 $ h₀ b hb, | |
have h₁ : {b | s ∈ n b} ∈ 𝓝 a, | |
{ refine is_open.mem_nhds (assume b (hb : s ∈ n b), _) hs, | |
rcases h₁ hb with ⟨t, ht, hts, h⟩, | |
exact mem_of_superset ht h }, | |
exact mem_of_superset h₁ h₀ }, | |
{ rcases (@mem_nhds_iff α (topological_space.mk_of_nhds n) _ _).1 hs with ⟨t, hts, ht, hat⟩, | |
exact (n a).sets_of_superset (ht _ hat) hts }, | |
end | |
lemma nhds_mk_of_nhds_filter_basis (B : α → filter_basis α) (a : α) (h₀ : ∀ x (n ∈ B x), x ∈ n) | |
(h₁ : ∀ x (n ∈ B x), ∃ n₁ ∈ B x, n₁ ⊆ n ∧ ∀ x' ∈ n₁, ∃ n₂ ∈ B x', n₂ ⊆ n) : | |
@nhds α (topological_space.mk_of_nhds (λ x, (B x).filter)) a = (B a).filter := | |
begin | |
rw topological_space.nhds_mk_of_nhds; | |
intros x n hn; | |
obtain ⟨m, hm₁, hm₂⟩ := (B x).mem_filter_iff.mp hn, | |
{ exact hm₂ (h₀ _ _ hm₁), }, | |
{ obtain ⟨n₁, hn₁, hn₂, hn₃⟩ := h₁ x m hm₁, | |
refine ⟨n₁, (B x).mem_filter_of_mem hn₁, hn₂.trans hm₂, λ x' hx', (B x').mem_filter_iff.mp _⟩, | |
obtain ⟨n₂, hn₄, hn₅⟩ := hn₃ x' hx', | |
exact ⟨n₂, hn₄, hn₅.trans hm₂⟩, }, | |
end | |
end topological_space | |
section lattice | |
variables {α : Type u} {β : Type v} | |
/-- The inclusion ordering on topologies on α. We use it to get a complete | |
lattice instance via the Galois insertion method, but the partial order | |
that we will eventually impose on `topological_space α` is the reverse one. -/ | |
def tmp_order : partial_order (topological_space α) := | |
{ le := λt s, t.is_open ≤ s.is_open, | |
le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₁ h₂, | |
le_refl := assume t, le_refl t.is_open, | |
le_trans := assume a b c h₁ h₂, @le_trans _ _ a.is_open b.is_open c.is_open h₁ h₂ } | |
local attribute [instance] tmp_order | |
/- We'll later restate this lemma in terms of the correct order on `topological_space α`. -/ | |
private lemma generate_from_le_iff_subset_is_open {g : set (set α)} {t : topological_space α} : | |
topological_space.generate_from g ≤ t ↔ g ⊆ {s | t.is_open s} := | |
iff.intro | |
(assume ht s hs, ht _ $ topological_space.generate_open.basic s hs) | |
(assume hg s hs, hs.rec_on (assume v hv, hg hv) | |
t.is_open_univ (assume u v _ _, t.is_open_inter u v) (assume k _, t.is_open_sUnion k)) | |
/-- If `s` equals the collection of open sets in the topology it generates, | |
then `s` defines a topology. -/ | |
protected def mk_of_closure (s : set (set α)) | |
(hs : {u | (topological_space.generate_from s).is_open u} = s) : topological_space α := | |
{ is_open := λu, u ∈ s, | |
is_open_univ := hs ▸ topological_space.generate_open.univ, | |
is_open_inter := hs ▸ topological_space.generate_open.inter, | |
is_open_sUnion := hs ▸ topological_space.generate_open.sUnion } | |
lemma mk_of_closure_sets {s : set (set α)} | |
{hs : {u | (topological_space.generate_from s).is_open u} = s} : | |
mk_of_closure s hs = topological_space.generate_from s := | |
topological_space_eq hs.symm | |
/-- The Galois insertion between `set (set α)` and `topological_space α` whose lower part | |
sends a collection of subsets of α to the topology they generate, and whose upper part | |
sends a topology to its collection of open subsets. -/ | |
def gi_generate_from (α : Type*) : | |
galois_insertion topological_space.generate_from (λt:topological_space α, {s | t.is_open s}) := | |
{ gc := assume g t, generate_from_le_iff_subset_is_open, | |
le_l_u := assume ts s hs, topological_space.generate_open.basic s hs, | |
choice := λg hg, mk_of_closure g | |
(subset.antisymm hg $ generate_from_le_iff_subset_is_open.1 $ le_rfl), | |
choice_eq := assume s hs, mk_of_closure_sets } | |
lemma generate_from_mono {α} {g₁ g₂ : set (set α)} (h : g₁ ⊆ g₂) : | |
topological_space.generate_from g₁ ≤ topological_space.generate_from g₂ := | |
(gi_generate_from _).gc.monotone_l h | |
lemma generate_from_set_of_is_open (t : topological_space α) : | |
topological_space.generate_from {s | t.is_open s} = t := | |
(gi_generate_from α).l_u_eq t | |
lemma left_inverse_generate_from : | |
function.left_inverse topological_space.generate_from | |
(λ t : topological_space α, {s | t.is_open s}) := | |
(gi_generate_from α).left_inverse_l_u | |
lemma generate_from_surjective : | |
function.surjective (topological_space.generate_from : set (set α) → topological_space α) := | |
(gi_generate_from α).l_surjective | |
lemma set_of_is_open_injective : | |
function.injective (λ t : topological_space α, {s | t.is_open s}) := | |
(gi_generate_from α).u_injective | |
/-- The "temporary" order `tmp_order` on `topological_space α`, i.e. the inclusion order, is a | |
complete lattice. (Note that later `topological_space α` will equipped with the dual order to | |
`tmp_order`). -/ | |
def tmp_complete_lattice {α : Type u} : complete_lattice (topological_space α) := | |
(gi_generate_from α).lift_complete_lattice | |
instance : has_le (topological_space α) := | |
{ le := λ t s, s.is_open ≤ t.is_open } | |
protected lemma topological_space.le_def {α} {t s : topological_space α} : | |
t ≤ s ↔ s.is_open ≤ t.is_open := iff.rfl | |
/-- The ordering on topologies on the type `α`. | |
`t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ | |
instance : partial_order (topological_space α) := | |
{ le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₂ h₁, | |
le_refl := assume t, le_refl t.is_open, | |
le_trans := assume a b c h₁ h₂, topological_space.le_def.mpr (le_trans h₂ h₁), | |
..topological_space.has_le } | |
lemma le_generate_from_iff_subset_is_open {g : set (set α)} {t : topological_space α} : | |
t ≤ topological_space.generate_from g ↔ g ⊆ {s | t.is_open s} := | |
generate_from_le_iff_subset_is_open | |
/-- Topologies on `α` form a complete lattice, with `⊥` the discrete topology | |
and `⊤` the indiscrete topology. The infimum of a collection of topologies | |
is the topology generated by all their open sets, while the supremum is the | |
topology whose open sets are those sets open in every member of the collection. -/ | |
instance : complete_lattice (topological_space α) := | |
@order_dual.complete_lattice _ tmp_complete_lattice | |
lemma is_open_implies_is_open_iff {a b : topological_space α} : | |
(∀ s, a.is_open s → b.is_open s) ↔ b ≤ a := | |
iff.rfl | |
/-- A topological space is discrete if every set is open, that is, | |
its topology equals the discrete topology `⊥`. -/ | |
class discrete_topology (α : Type*) [t : topological_space α] : Prop := | |
(eq_bot [] : t = ⊥) | |
@[priority 100] | |
instance discrete_topology_bot (α : Type*) : @discrete_topology α ⊥ := | |
{ eq_bot := rfl } | |
@[simp] lemma is_open_discrete [topological_space α] [discrete_topology α] (s : set α) : | |
is_open s := | |
(discrete_topology.eq_bot α).symm ▸ trivial | |
@[simp] lemma is_closed_discrete [topological_space α] [discrete_topology α] (s : set α) : | |
is_closed s := | |
is_open_compl_iff.1 $ (discrete_topology.eq_bot α).symm ▸ trivial | |
@[nontriviality] | |
lemma continuous_of_discrete_topology [topological_space α] [discrete_topology α] | |
[topological_space β] {f : α → β} : continuous f := | |
continuous_def.2 $ λs hs, is_open_discrete _ | |
lemma nhds_bot (α : Type*) : (@nhds α ⊥) = pure := | |
begin | |
refine le_antisymm _ (@pure_le_nhds α ⊥), | |
assume a s hs, | |
exact @is_open.mem_nhds α ⊥ a s trivial hs | |
end | |
lemma nhds_discrete (α : Type*) [topological_space α] [discrete_topology α] : (@nhds α _) = pure := | |
(discrete_topology.eq_bot α).symm ▸ nhds_bot α | |
lemma mem_nhds_discrete [topological_space α] [discrete_topology α] {x : α} {s : set α} : | |
s ∈ 𝓝 x ↔ x ∈ s := | |
by rw [nhds_discrete, mem_pure] | |
lemma le_of_nhds_le_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x ≤ @nhds α t₂ x) : | |
t₁ ≤ t₂ := | |
assume s, show @is_open α t₂ s → @is_open α t₁ s, | |
by { simp only [is_open_iff_nhds, le_principal_iff], exact assume hs a ha, h _ $ hs _ ha } | |
lemma eq_of_nhds_eq_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x = @nhds α t₂ x) : | |
t₁ = t₂ := | |
le_antisymm | |
(le_of_nhds_le_nhds $ assume x, le_of_eq $ h x) | |
(le_of_nhds_le_nhds $ assume x, le_of_eq $ (h x).symm) | |
lemma eq_bot_of_singletons_open {t : topological_space α} (h : ∀ x, t.is_open {x}) : t = ⊥ := | |
bot_unique $ λ s hs, bUnion_of_singleton s ▸ is_open_bUnion (λ x _, h x) | |
lemma forall_open_iff_discrete {X : Type*} [topological_space X] : | |
(∀ s : set X, is_open s) ↔ discrete_topology X := | |
⟨λ h, ⟨by { ext U , show is_open U ↔ true, simp [h U] }⟩, λ a, @is_open_discrete _ _ a⟩ | |
lemma singletons_open_iff_discrete {X : Type*} [topological_space X] : | |
(∀ a : X, is_open ({a} : set X)) ↔ discrete_topology X := | |
⟨λ h, ⟨eq_bot_of_singletons_open h⟩, λ a _, @is_open_discrete _ _ a _⟩ | |
end lattice | |
section galois_connection | |
variables {α : Type*} {β : Type*} {γ : Type*} | |
/-- Given `f : α → β` and a topology on `β`, the induced topology on `α` is the collection of | |
sets that are preimages of some open set in `β`. This is the coarsest topology that | |
makes `f` continuous. -/ | |
def topological_space.induced {α : Type u} {β : Type v} (f : α → β) (t : topological_space β) : | |
topological_space α := | |
{ is_open := λs, ∃s', t.is_open s' ∧ f ⁻¹' s' = s, | |
is_open_univ := ⟨univ, t.is_open_univ, preimage_univ⟩, | |
is_open_inter := by rintro s₁ s₂ ⟨s'₁, hs₁, rfl⟩ ⟨s'₂, hs₂, rfl⟩; | |
exact ⟨s'₁ ∩ s'₂, t.is_open_inter _ _ hs₁ hs₂, preimage_inter⟩, | |
is_open_sUnion := assume s h, | |
begin | |
simp only [classical.skolem] at h, | |
cases h with f hf, | |
apply exists.intro (⋃(x : set α) (h : x ∈ s), f x h), | |
simp only [sUnion_eq_bUnion, preimage_Union, (λx h, (hf x h).right)], refine ⟨_, rfl⟩, | |
exact (@is_open_Union β _ t _ $ assume i, | |
show is_open (⋃h, f i h), from @is_open_Union β _ t _ $ assume h, (hf i h).left) | |
end } | |
lemma is_open_induced_iff [t : topological_space β] {s : set α} {f : α → β} : | |
@is_open α (t.induced f) s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) := | |
iff.rfl | |
lemma is_open_induced_iff' [t : topological_space β] {s : set α} {f : α → β} : | |
(t.induced f).is_open s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) := | |
iff.rfl | |
lemma is_closed_induced_iff [t : topological_space β] {s : set α} {f : α → β} : | |
@is_closed α (t.induced f) s ↔ (∃t, is_closed t ∧ f ⁻¹' t = s) := | |
begin | |
simp only [← is_open_compl_iff, is_open_induced_iff], | |
exact compl_surjective.exists.trans (by simp only [preimage_compl, compl_inj_iff]) | |
end | |
/-- Given `f : α → β` and a topology on `α`, the coinduced topology on `β` is defined | |
such that `s:set β` is open if the preimage of `s` is open. This is the finest topology that | |
makes `f` continuous. -/ | |
def topological_space.coinduced {α : Type u} {β : Type v} (f : α → β) (t : topological_space α) : | |
topological_space β := | |
{ is_open := λs, t.is_open (f ⁻¹' s), | |
is_open_univ := by rw preimage_univ; exact t.is_open_univ, | |
is_open_inter := assume s₁ s₂ h₁ h₂, by rw preimage_inter; exact t.is_open_inter _ _ h₁ h₂, | |
is_open_sUnion := assume s h, by rw [preimage_sUnion]; exact (@is_open_Union _ _ t _ $ assume i, | |
show is_open (⋃ (H : i ∈ s), f ⁻¹' i), from | |
@is_open_Union _ _ t _ $ assume hi, h i hi) } | |
lemma is_open_coinduced {t : topological_space α} {s : set β} {f : α → β} : | |
@is_open β (topological_space.coinduced f t) s ↔ is_open (f ⁻¹' s) := | |
iff.rfl | |
lemma preimage_nhds_coinduced [topological_space α] {π : α → β} {s : set β} | |
{a : α} (hs : s ∈ @nhds β (topological_space.coinduced π ‹_›) (π a)) : π ⁻¹' s ∈ 𝓝 a := | |
begin | |
letI := topological_space.coinduced π ‹_›, | |
rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩, | |
exact mem_nhds_iff.mpr ⟨π ⁻¹' V, set.preimage_mono hVs, V_op, mem_V⟩ | |
end | |
variables {t t₁ t₂ : topological_space α} {t' : topological_space β} {f : α → β} {g : β → α} | |
lemma continuous.coinduced_le (h : @continuous α β t t' f) : | |
t.coinduced f ≤ t' := | |
λ s hs, (continuous_def.1 h s hs : _) | |
lemma coinduced_le_iff_le_induced {f : α → β} {tα : topological_space α} | |
{tβ : topological_space β} : | |
tα.coinduced f ≤ tβ ↔ tα ≤ tβ.induced f := | |
iff.intro | |
(assume h s ⟨t, ht, hst⟩, hst ▸ h _ ht) | |
(assume h s hs, show tα.is_open (f ⁻¹' s), from h _ ⟨s, hs, rfl⟩) | |
lemma continuous.le_induced (h : @continuous α β t t' f) : | |
t ≤ t'.induced f := | |
coinduced_le_iff_le_induced.1 h.coinduced_le | |
lemma gc_coinduced_induced (f : α → β) : | |
galois_connection (topological_space.coinduced f) (topological_space.induced f) := | |
assume f g, coinduced_le_iff_le_induced | |
lemma induced_mono (h : t₁ ≤ t₂) : t₁.induced g ≤ t₂.induced g := | |
(gc_coinduced_induced g).monotone_u h | |
lemma coinduced_mono (h : t₁ ≤ t₂) : t₁.coinduced f ≤ t₂.coinduced f := | |
(gc_coinduced_induced f).monotone_l h | |
@[simp] lemma induced_top : (⊤ : topological_space α).induced g = ⊤ := | |
(gc_coinduced_induced g).u_top | |
@[simp] lemma induced_inf : (t₁ ⊓ t₂).induced g = t₁.induced g ⊓ t₂.induced g := | |
(gc_coinduced_induced g).u_inf | |
@[simp] lemma induced_infi {ι : Sort w} {t : ι → topological_space α} : | |
(⨅i, t i).induced g = (⨅i, (t i).induced g) := | |
(gc_coinduced_induced g).u_infi | |
@[simp] lemma coinduced_bot : (⊥ : topological_space α).coinduced f = ⊥ := | |
(gc_coinduced_induced f).l_bot | |
@[simp] lemma coinduced_sup : (t₁ ⊔ t₂).coinduced f = t₁.coinduced f ⊔ t₂.coinduced f := | |
(gc_coinduced_induced f).l_sup | |
@[simp] lemma coinduced_supr {ι : Sort w} {t : ι → topological_space α} : | |
(⨆i, t i).coinduced f = (⨆i, (t i).coinduced f) := | |
(gc_coinduced_induced f).l_supr | |
lemma induced_id [t : topological_space α] : t.induced id = t := | |
topological_space_eq $ funext $ assume s, propext $ | |
⟨assume ⟨s', hs, h⟩, h ▸ hs, assume hs, ⟨s, hs, rfl⟩⟩ | |
lemma induced_compose [tγ : topological_space γ] | |
{f : α → β} {g : β → γ} : (tγ.induced g).induced f = tγ.induced (g ∘ f) := | |
topological_space_eq $ funext $ assume s, propext $ | |
⟨assume ⟨s', ⟨s, hs, h₂⟩, h₁⟩, h₁ ▸ h₂ ▸ ⟨s, hs, rfl⟩, | |
assume ⟨s, hs, h⟩, ⟨preimage g s, ⟨s, hs, rfl⟩, h ▸ rfl⟩⟩ | |
lemma induced_const [t : topological_space α] {x : α} : | |
t.induced (λ y : β, x) = ⊤ := | |
le_antisymm le_top (@continuous_const β α ⊤ t x).le_induced | |
lemma coinduced_id [t : topological_space α] : t.coinduced id = t := | |
topological_space_eq rfl | |
lemma coinduced_compose [tα : topological_space α] | |
{f : α → β} {g : β → γ} : (tα.coinduced f).coinduced g = tα.coinduced (g ∘ f) := | |
topological_space_eq rfl | |
lemma equiv.induced_symm {α β : Type*} (e : α ≃ β) : | |
topological_space.induced e.symm = topological_space.coinduced e := | |
begin | |
ext t U, | |
split, | |
{ rintros ⟨V, hV, rfl⟩, | |
change t.is_open (e ⁻¹' _), | |
rwa [← preimage_comp, ← equiv.coe_trans, equiv.self_trans_symm] }, | |
{ intros hU, | |
refine ⟨e ⁻¹' U, hU, _⟩, | |
rw [← preimage_comp, ← equiv.coe_trans, equiv.symm_trans_self, equiv.coe_refl, preimage_id] } | |
end | |
lemma equiv.coinduced_symm {α β : Type*} (e : α ≃ β) : | |
topological_space.coinduced e.symm = topological_space.induced e := | |
by rw [← e.symm.induced_symm, e.symm_symm] | |
end galois_connection | |
/- constructions using the complete lattice structure -/ | |
section constructions | |
open topological_space | |
variables {α : Type u} {β : Type v} | |
instance inhabited_topological_space {α : Type u} : inhabited (topological_space α) := | |
⟨⊤⟩ | |
@[priority 100] | |
instance subsingleton.unique_topological_space [subsingleton α] : | |
unique (topological_space α) := | |
{ default := ⊥, | |
uniq := λ t, eq_bot_of_singletons_open $ λ x, subsingleton.set_cases | |
(@is_open_empty _ t) (@is_open_univ _ t) ({x} : set α) } | |
@[priority 100] | |
instance subsingleton.discrete_topology [t : topological_space α] [subsingleton α] : | |
discrete_topology α := | |
⟨unique.eq_default t⟩ | |
instance : topological_space empty := ⊥ | |
instance : discrete_topology empty := ⟨rfl⟩ | |
instance : topological_space pempty := ⊥ | |
instance : discrete_topology pempty := ⟨rfl⟩ | |
instance : topological_space punit := ⊥ | |
instance : discrete_topology punit := ⟨rfl⟩ | |
instance : topological_space bool := ⊥ | |
instance : discrete_topology bool := ⟨rfl⟩ | |
instance : topological_space ℕ := ⊥ | |
instance : discrete_topology ℕ := ⟨rfl⟩ | |
instance : topological_space ℤ := ⊥ | |
instance : discrete_topology ℤ := ⟨rfl⟩ | |
instance sierpinski_space : topological_space Prop := | |
generate_from {{true}} | |
lemma continuous_empty_function [topological_space α] [topological_space β] [is_empty β] | |
(f : α → β) : continuous f := | |
by { letI := function.is_empty f, exact continuous_of_discrete_topology } | |
lemma le_generate_from {t : topological_space α} { g : set (set α) } (h : ∀s∈g, is_open s) : | |
t ≤ generate_from g := | |
le_generate_from_iff_subset_is_open.2 h | |
lemma induced_generate_from_eq {α β} {b : set (set β)} {f : α → β} : | |
(generate_from b).induced f = topological_space.generate_from (preimage f '' b) := | |
le_antisymm | |
(le_generate_from $ ball_image_iff.2 $ assume s hs, ⟨s, generate_open.basic _ hs, rfl⟩) | |
(coinduced_le_iff_le_induced.1 $ le_generate_from $ assume s hs, | |
generate_open.basic _ $ mem_image_of_mem _ hs) | |
lemma le_induced_generate_from {α β} [t : topological_space α] {b : set (set β)} | |
{f : α → β} (h : ∀ (a : set β), a ∈ b → is_open (f ⁻¹' a)) : t ≤ induced f (generate_from b) := | |
begin | |
rw induced_generate_from_eq, | |
apply le_generate_from, | |
simp only [mem_image, and_imp, forall_apply_eq_imp_iff₂, exists_imp_distrib], | |
exact h, | |
end | |
/-- This construction is left adjoint to the operation sending a topology on `α` | |
to its neighborhood filter at a fixed point `a : α`. -/ | |
def nhds_adjoint (a : α) (f : filter α) : topological_space α := | |
{ is_open := λs, a ∈ s → s ∈ f, | |
is_open_univ := assume s, univ_mem, | |
is_open_inter := assume s t hs ht ⟨has, hat⟩, inter_mem (hs has) (ht hat), | |
is_open_sUnion := assume k hk ⟨u, hu, hau⟩, mem_of_superset (hk u hu hau) | |
(subset_sUnion_of_mem hu) } | |
lemma gc_nhds (a : α) : | |
galois_connection (nhds_adjoint a) (λt, @nhds α t a) := | |
assume f t, by { rw le_nhds_iff, exact ⟨λ H s hs has, H _ has hs, λ H s has hs, H _ hs has⟩ } | |
lemma nhds_mono {t₁ t₂ : topological_space α} {a : α} (h : t₁ ≤ t₂) : | |
@nhds α t₁ a ≤ @nhds α t₂ a := (gc_nhds a).monotone_u h | |
lemma le_iff_nhds {α : Type*} (t t' : topological_space α) : | |
t ≤ t' ↔ ∀ x, @nhds α t x ≤ @nhds α t' x := | |
⟨λ h x, nhds_mono h, le_of_nhds_le_nhds⟩ | |
lemma nhds_adjoint_nhds {α : Type*} (a : α) (f : filter α) : | |
@nhds α (nhds_adjoint a f) a = pure a ⊔ f := | |
begin | |
ext U, | |
rw mem_nhds_iff, | |
split, | |
{ rintros ⟨t, htU, ht, hat⟩, | |
exact ⟨htU hat, mem_of_superset (ht hat) htU⟩}, | |
{ rintros ⟨haU, hU⟩, | |
exact ⟨U, subset.rfl, λ h, hU, haU⟩ } | |
end | |
lemma nhds_adjoint_nhds_of_ne {α : Type*} (a : α) (f : filter α) {b : α} (h : b ≠ a) : | |
@nhds α (nhds_adjoint a f) b = pure b := | |
begin | |
apply le_antisymm, | |
{ intros U hU, | |
rw mem_nhds_iff, | |
use {b}, | |
simp only [and_true, singleton_subset_iff, mem_singleton], | |
refine ⟨hU, λ ha, (h.symm ha).elim⟩ }, | |
{ exact @pure_le_nhds α (nhds_adjoint a f) b }, | |
end | |
lemma is_open_singleton_nhds_adjoint {α : Type*} {a b : α} (f : filter α) (hb : b ≠ a) : | |
@is_open α (nhds_adjoint a f) {b} := | |
begin | |
rw is_open_singleton_iff_nhds_eq_pure, | |
exact nhds_adjoint_nhds_of_ne a f hb | |
end | |
lemma le_nhds_adjoint_iff' {α : Type*} (a : α) (f : filter α) (t : topological_space α) : | |
t ≤ nhds_adjoint a f ↔ @nhds α t a ≤ pure a ⊔ f ∧ ∀ b ≠ a, @nhds α t b = pure b := | |
begin | |
rw le_iff_nhds, | |
split, | |
{ intros h, | |
split, | |
{ specialize h a, | |
rwa nhds_adjoint_nhds at h }, | |
{ intros b hb, | |
apply le_antisymm _ (pure_le_nhds b), | |
specialize h b, | |
rwa nhds_adjoint_nhds_of_ne a f hb at h } }, | |
{ rintros ⟨h, h'⟩ b, | |
by_cases hb : b = a, | |
{ rwa [hb, nhds_adjoint_nhds] }, | |
{ simp [nhds_adjoint_nhds_of_ne a f hb, h' b hb] } } | |
end | |
lemma le_nhds_adjoint_iff {α : Type*} (a : α) (f : filter α) (t : topological_space α) : | |
t ≤ nhds_adjoint a f ↔ (@nhds α t a ≤ pure a ⊔ f ∧ ∀ b, b ≠ a → t.is_open {b}) := | |
begin | |
change _ ↔ _ ∧ ∀ (b : α), b ≠ a → is_open {b}, | |
rw [le_nhds_adjoint_iff', and.congr_right_iff], | |
apply λ h, forall_congr (λ b, _), | |
rw @is_open_singleton_iff_nhds_eq_pure α t b | |
end | |
lemma nhds_infi {ι : Sort*} {t : ι → topological_space α} {a : α} : | |
@nhds α (infi t) a = (⨅i, @nhds α (t i) a) := (gc_nhds a).u_infi | |
lemma nhds_Inf {s : set (topological_space α)} {a : α} : | |
@nhds α (Inf s) a = (⨅t∈s, @nhds α t a) := (gc_nhds a).u_Inf | |
lemma nhds_inf {t₁ t₂ : topological_space α} {a : α} : | |
@nhds α (t₁ ⊓ t₂) a = @nhds α t₁ a ⊓ @nhds α t₂ a := (gc_nhds a).u_inf | |
lemma nhds_top {a : α} : @nhds α ⊤ a = ⊤ := (gc_nhds a).u_top | |
lemma is_open_sup {t₁ t₂ : topological_space α} {s : set α} : | |
@is_open α (t₁ ⊔ t₂) s ↔ @is_open α t₁ s ∧ @is_open α t₂ s := | |
iff.rfl | |
local notation `cont` := @continuous _ _ | |
local notation `tspace` := topological_space | |
open topological_space | |
variables {γ : Type*} {f : α → β} {ι : Sort*} | |
lemma continuous_iff_coinduced_le {t₁ : tspace α} {t₂ : tspace β} : | |
cont t₁ t₂ f ↔ coinduced f t₁ ≤ t₂ := | |
continuous_def.trans iff.rfl | |
lemma continuous_iff_le_induced {t₁ : tspace α} {t₂ : tspace β} : | |
cont t₁ t₂ f ↔ t₁ ≤ induced f t₂ := | |
iff.trans continuous_iff_coinduced_le (gc_coinduced_induced f _ _) | |
theorem continuous_generated_from {t : tspace α} {b : set (set β)} | |
(h : ∀s∈b, is_open (f ⁻¹' s)) : cont t (generate_from b) f := | |
continuous_iff_coinduced_le.2 $ le_generate_from h | |
@[continuity] | |
lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f := | |
by { rw continuous_def, assume s h, exact ⟨_, h, rfl⟩ } | |
lemma continuous_induced_rng {g : γ → α} {t₂ : tspace β} {t₁ : tspace γ} : | |
cont t₁ (induced f t₂) g ↔ cont t₁ t₂ (f ∘ g) := | |
by simp only [continuous_iff_le_induced, induced_compose] | |
lemma continuous_coinduced_rng {t : tspace α} : cont t (coinduced f t) f := | |
by { rw continuous_def, assume s h, exact h } | |
lemma continuous_coinduced_dom {g : β → γ} {t₁ : tspace α} {t₂ : tspace γ} : | |
cont (coinduced f t₁) t₂ g ↔ cont t₁ t₂ (g ∘ f) := | |
by simp only [continuous_iff_coinduced_le, coinduced_compose] | |
lemma continuous_le_dom {t₁ t₂ : tspace α} {t₃ : tspace β} | |
(h₁ : t₂ ≤ t₁) (h₂ : cont t₁ t₃ f) : cont t₂ t₃ f := | |
begin | |
rw continuous_def at h₂ ⊢, | |
assume s h, | |
exact h₁ _ (h₂ s h) | |
end | |
lemma continuous_le_rng {t₁ : tspace α} {t₂ t₃ : tspace β} | |
(h₁ : t₂ ≤ t₃) (h₂ : cont t₁ t₂ f) : cont t₁ t₃ f := | |
begin | |
rw continuous_def at h₂ ⊢, | |
assume s h, | |
exact h₂ s (h₁ s h) | |
end | |
lemma continuous_sup_dom {t₁ t₂ : tspace α} {t₃ : tspace β} : | |
cont (t₁ ⊔ t₂) t₃ f ↔ cont t₁ t₃ f ∧ cont t₂ t₃ f := | |
by simp only [continuous_iff_le_induced, sup_le_iff] | |
lemma continuous_sup_rng_left {t₁ : tspace α} {t₃ t₂ : tspace β} : | |
cont t₁ t₂ f → cont t₁ (t₂ ⊔ t₃) f := | |
continuous_le_rng le_sup_left | |
lemma continuous_sup_rng_right {t₁ : tspace α} {t₃ t₂ : tspace β} : | |
cont t₁ t₃ f → cont t₁ (t₂ ⊔ t₃) f := | |
continuous_le_rng le_sup_right | |
lemma continuous_Sup_dom {T : set (tspace α)} {t₂ : tspace β} : | |
cont (Sup T) t₂ f ↔ ∀ t ∈ T, cont t t₂ f := | |
by simp only [continuous_iff_le_induced, Sup_le_iff] | |
lemma continuous_Sup_rng {t₁ : tspace α} {t₂ : set (tspace β)} {t : tspace β} | |
(h₁ : t ∈ t₂) (hf : cont t₁ t f) : cont t₁ (Sup t₂) f := | |
continuous_iff_coinduced_le.2 $ le_Sup_of_le h₁ $ continuous_iff_coinduced_le.1 hf | |
lemma continuous_supr_dom {t₁ : ι → tspace α} {t₂ : tspace β} : | |
cont (supr t₁) t₂ f ↔ ∀ i, cont (t₁ i) t₂ f := | |
by simp only [continuous_iff_le_induced, supr_le_iff] | |
lemma continuous_supr_rng {t₁ : tspace α} {t₂ : ι → tspace β} {i : ι} | |
(h : cont t₁ (t₂ i) f) : cont t₁ (supr t₂) f := | |
continuous_Sup_rng ⟨i, rfl⟩ h | |
lemma continuous_inf_rng {t₁ : tspace α} {t₂ t₃ : tspace β} : | |
cont t₁ (t₂ ⊓ t₃) f ↔ cont t₁ t₂ f ∧ cont t₁ t₃ f := | |
by simp only [continuous_iff_coinduced_le, le_inf_iff] | |
lemma continuous_inf_dom_left {t₁ t₂ : tspace α} {t₃ : tspace β} : | |
cont t₁ t₃ f → cont (t₁ ⊓ t₂) t₃ f := | |
continuous_le_dom inf_le_left | |
lemma continuous_inf_dom_right {t₁ t₂ : tspace α} {t₃ : tspace β} : | |
cont t₂ t₃ f → cont (t₁ ⊓ t₂) t₃ f := | |
continuous_le_dom inf_le_right | |
lemma continuous_Inf_dom {t₁ : set (tspace α)} {t₂ : tspace β} {t : tspace α} (h₁ : t ∈ t₁) : | |
cont t t₂ f → cont (Inf t₁) t₂ f := | |
continuous_le_dom $ Inf_le h₁ | |
lemma continuous_Inf_rng {t₁ : tspace α} {T : set (tspace β)} : | |
cont t₁ (Inf T) f ↔ ∀ t ∈ T, cont t₁ t f := | |
by simp only [continuous_iff_coinduced_le, le_Inf_iff] | |
lemma continuous_infi_dom {t₁ : ι → tspace α} {t₂ : tspace β} {i : ι} : | |
cont (t₁ i) t₂ f → cont (infi t₁) t₂ f := | |
continuous_le_dom $ infi_le _ _ | |
lemma continuous_infi_rng {t₁ : tspace α} {t₂ : ι → tspace β} : | |
cont t₁ (infi t₂) f ↔ ∀ i, cont t₁ (t₂ i) f := | |
by simp only [continuous_iff_coinduced_le, le_infi_iff] | |
@[continuity] lemma continuous_bot {t : tspace β} : cont ⊥ t f := | |
continuous_iff_le_induced.2 $ bot_le | |
@[continuity] lemma continuous_top {t : tspace α} : cont t ⊤ f := | |
continuous_iff_coinduced_le.2 $ le_top | |
lemma continuous_id_iff_le {t t' : tspace α} : cont t t' id ↔ t ≤ t' := | |
@continuous_def _ _ t t' id | |
lemma continuous_id_of_le {t t' : tspace α} (h : t ≤ t') : cont t t' id := | |
continuous_id_iff_le.2 h | |
/- 𝓝 in the induced topology -/ | |
theorem mem_nhds_induced [T : topological_space α] (f : β → α) (a : β) (s : set β) : | |
s ∈ @nhds β (topological_space.induced f T) a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s := | |
begin | |
simp only [mem_nhds_iff, is_open_induced_iff, exists_prop, set.mem_set_of_eq], | |
split, | |
{ rintros ⟨u, usub, ⟨v, openv, ueq⟩, au⟩, | |
exact ⟨v, ⟨v, set.subset.refl v, openv, by rwa ←ueq at au⟩, by rw ueq; exact usub⟩ }, | |
rintros ⟨u, ⟨v, vsubu, openv, amem⟩, finvsub⟩, | |
exact ⟨f ⁻¹' v, set.subset.trans (set.preimage_mono vsubu) finvsub, ⟨⟨v, openv, rfl⟩, amem⟩⟩ | |
end | |
theorem nhds_induced [T : topological_space α] (f : β → α) (a : β) : | |
@nhds β (topological_space.induced f T) a = comap f (𝓝 (f a)) := | |
by { ext s, rw [mem_nhds_induced, mem_comap] } | |
lemma induced_iff_nhds_eq [tα : topological_space α] [tβ : topological_space β] (f : β → α) : | |
tβ = tα.induced f ↔ ∀ b, 𝓝 b = comap f (𝓝 $ f b) := | |
⟨λ h a, h.symm ▸ nhds_induced f a, λ h, eq_of_nhds_eq_nhds $ λ x, by rw [h, nhds_induced]⟩ | |
theorem map_nhds_induced_of_surjective [T : topological_space α] | |
{f : β → α} (hf : function.surjective f) (a : β) : | |
map f (@nhds β (topological_space.induced f T) a) = 𝓝 (f a) := | |
by rw [nhds_induced, map_comap_of_surjective hf] | |
end constructions | |
section induced | |
open topological_space | |
variables {α : Type*} {β : Type*} | |
variables [t : topological_space β] {f : α → β} | |
theorem is_open_induced_eq {s : set α} : | |
@is_open _ (induced f t) s ↔ s ∈ preimage f '' {s | is_open s} := | |
iff.rfl | |
theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (f ⁻¹' s) := | |
⟨s, h, rfl⟩ | |
lemma map_nhds_induced_eq (a : α) : map f (@nhds α (induced f t) a) = 𝓝[range f] (f a) := | |
by rw [nhds_induced, filter.map_comap, nhds_within] | |
lemma map_nhds_induced_of_mem {a : α} (h : range f ∈ 𝓝 (f a)) : | |
map f (@nhds α (induced f t) a) = 𝓝 (f a) := | |
by rw [nhds_induced, filter.map_comap_of_mem h] | |
lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α} : | |
a ∈ @closure α (topological_space.induced f t) s ↔ f a ∈ closure (f '' s) := | |
by simp only [mem_closure_iff_frequently, nhds_induced, frequently_comap, mem_image, and_comm] | |
lemma is_closed_induced_iff' [t : topological_space β] {f : α → β} {s : set α} : | |
@is_closed α (t.induced f) s ↔ ∀ a, f a ∈ closure (f '' s) → a ∈ s := | |
by simp only [← closure_subset_iff_is_closed, subset_def, closure_induced] | |
end induced | |
section sierpinski | |
variables {α : Type*} [topological_space α] | |
@[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) := | |
topological_space.generate_open.basic _ (mem_singleton _) | |
@[simp] lemma nhds_true : 𝓝 true = pure true := | |
le_antisymm (le_pure_iff.2 $ is_open_singleton_true.mem_nhds $ mem_singleton _) (pure_le_nhds _) | |
@[simp] lemma nhds_false : 𝓝 false = ⊤ := | |
topological_space.nhds_generate_from.trans $ by simp [@and.comm (_ ∈ _)] | |
lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} := | |
⟨assume h : continuous p, | |
have is_open (p ⁻¹' {true}), | |
from is_open_singleton_true.preimage h, | |
by simpa [preimage, eq_true] using this, | |
assume h : is_open {x | p x}, | |
continuous_generated_from $ assume s (hs : s = {true}), | |
by simp [hs, preimage, eq_true, h]⟩ | |
lemma is_open_iff_continuous_mem {s : set α} : is_open s ↔ continuous (λ x, x ∈ s) := | |
continuous_Prop.symm | |
end sierpinski | |
section infi | |
variables {α : Type u} {ι : Sort v} | |
lemma generate_from_union (a₁ a₂ : set (set α)) : | |
topological_space.generate_from (a₁ ∪ a₂) = | |
topological_space.generate_from a₁ ⊓ topological_space.generate_from a₂ := | |
@galois_connection.l_sup _ (topological_space α)ᵒᵈ a₁ a₂ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) | |
lemma set_of_is_open_sup (t₁ t₂ : topological_space α) : | |
{s | (t₁ ⊔ t₂).is_open s} = {s | t₁.is_open s} ∩ {s | t₂.is_open s} := | |
@galois_connection.u_inf _ (topological_space α)ᵒᵈ t₁ t₂ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) | |
lemma generate_from_Union {f : ι → set (set α)} : | |
topological_space.generate_from (⋃ i, f i) = (⨅ i, topological_space.generate_from (f i)) := | |
@galois_connection.l_supr _ (topological_space α)ᵒᵈ _ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) f | |
lemma set_of_is_open_supr {t : ι → topological_space α} : | |
{s | (⨆ i, t i).is_open s} = ⋂ i, {s | (t i).is_open s} := | |
@galois_connection.u_infi _ (topological_space α)ᵒᵈ _ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) t | |
lemma generate_from_sUnion {S : set (set (set α))} : | |
topological_space.generate_from (⋃₀ S) = (⨅ s ∈ S, topological_space.generate_from s) := | |
@galois_connection.l_Sup _ (topological_space α)ᵒᵈ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) S | |
lemma set_of_is_open_Sup {T : set (topological_space α)} : | |
{s | (Sup T).is_open s} = ⋂ t ∈ T, {s | (t : topological_space α).is_open s} := | |
@galois_connection.u_Inf _ (topological_space α)ᵒᵈ _ _ _ _ | |
(λ g t, generate_from_le_iff_subset_is_open) T | |
lemma generate_from_union_is_open (a b : topological_space α) : | |
topological_space.generate_from ({s | a.is_open s} ∪ {s | b.is_open s}) = a ⊓ b := | |
@galois_insertion.l_sup_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b | |
lemma generate_from_Union_is_open (f : ι → topological_space α) : | |
topological_space.generate_from (⋃ i, {s | (f i).is_open s}) = ⨅ i, (f i) := | |
@galois_insertion.l_supr_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f | |
lemma generate_from_inter (a b : topological_space α) : | |
topological_space.generate_from ({s | a.is_open s} ∩ {s | b.is_open s}) = a ⊔ b := | |
@galois_insertion.l_inf_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b | |
lemma generate_from_Inter (f : ι → topological_space α) : | |
topological_space.generate_from (⋂ i, {s | (f i).is_open s}) = ⨆ i, (f i) := | |
@galois_insertion.l_infi_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f | |
lemma generate_from_Inter_of_generate_from_eq_self (f : ι → set (set α)) | |
(hf : ∀ i, {s | (topological_space.generate_from (f i)).is_open s} = f i) : | |
topological_space.generate_from (⋂ i, (f i)) = ⨆ i, topological_space.generate_from (f i) := | |
@galois_insertion.l_infi_of_ul_eq_self _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f hf | |
variables {t : ι → topological_space α} | |
lemma is_open_supr_iff {s : set α} : @is_open _ (⨆ i, t i) s ↔ ∀ i, @is_open _ (t i) s := | |
show s ∈ set_of (supr t).is_open ↔ s ∈ {x : set α | ∀ (i : ι), (t i).is_open x}, | |
by simp [set_of_is_open_supr] | |
lemma is_closed_supr_iff {s : set α} : @is_closed _ (⨆ i, t i) s ↔ ∀ i, @is_closed _ (t i) s := | |
by simp [← is_open_compl_iff, is_open_supr_iff] | |
end infi | |