/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import topology.tactic /-! # Ordering on topologies and (co)induced topologies Topologies on a fixed type `α` are ordered, by reverse inclusion. That is, for topologies `t₁` and `t₂` on `α`, we write `t₁ ≤ t₂` if every set open in `t₂` is also open in `t₁`. (One also calls `t₁` finer than `t₂`, and `t₂` coarser than `t₁`.) Any function `f : α → β` induces `induced f : topological_space β → topological_space α` and `coinduced f : topological_space α → topological_space β`. Continuity, the ordering on topologies and (co)induced topologies are related as follows: * The identity map (α, t₁) → (α, t₂) is continuous iff t₁ ≤ t₂. * A map f : (α, t) → (β, u) is continuous iff t ≤ induced f u (`continuous_iff_le_induced`) iff coinduced f t ≤ u (`continuous_iff_coinduced_le`). Topologies on α form a complete lattice, with ⊥ the discrete topology and ⊤ the indiscrete topology. For a function f : α → β, (coinduced f, induced f) is a Galois connection between topologies on α and topologies on β. ## Implementation notes There is a Galois insertion between topologies on α (with the inclusion ordering) and all collections of sets in α. The complete lattice structure on topologies on α is defined as the reverse of the one obtained via this Galois insertion. ## Tags finer, coarser, induced topology, coinduced topology -/ open set filter classical open_locale classical topological_space filter universes u v w namespace topological_space variables {α : Type u} /-- The open sets of the least topology containing a collection of basic sets. -/ inductive generate_open (g : set (set α)) : set α → Prop | basic : ∀s∈g, generate_open s | univ : generate_open univ | inter : ∀s t, generate_open s → generate_open t → generate_open (s ∩ t) | sUnion : ∀k, (∀s∈k, generate_open s) → generate_open (⋃₀ k) /-- The smallest topological space containing the collection `g` of basic sets -/ def generate_from (g : set (set α)) : topological_space α := { is_open := generate_open g, is_open_univ := generate_open.univ, is_open_inter := generate_open.inter, is_open_sUnion := generate_open.sUnion } lemma is_open_generate_from_of_mem {g : set (set α)} {s : set α} (hs : s ∈ g) : @is_open _ (generate_from g) s := generate_open.basic s hs lemma nhds_generate_from {g : set (set α)} {a : α} : @nhds α (generate_from g) a = (⨅s∈{s | a ∈ s ∧ s ∈ g}, 𝓟 s) := by rw nhds_def; exact le_antisymm (binfi_mono $ λ s ⟨as, sg⟩, ⟨as, generate_open.basic _ sg⟩) (le_infi $ assume s, le_infi $ assume ⟨as, hs⟩, begin revert as, clear_, induction hs, case generate_open.basic : s hs { exact assume as, infi_le_of_le s $ infi_le _ ⟨as, hs⟩ }, case generate_open.univ { rw [principal_univ], exact assume _, le_top }, case generate_open.inter : s t hs' ht' hs ht { exact assume ⟨has, hat⟩, calc _ ≤ 𝓟 s ⊓ 𝓟 t : le_inf (hs has) (ht hat) ... = _ : inf_principal }, case generate_open.sUnion : k hk' hk { exact λ ⟨t, htk, hat⟩, calc _ ≤ 𝓟 t : hk t htk hat ... ≤ _ : le_principal_iff.2 $ subset_sUnion_of_mem htk } end) lemma tendsto_nhds_generate_from {β : Type*} {m : α → β} {f : filter α} {g : set (set β)} {b : β} (h : ∀s∈g, b ∈ s → m ⁻¹' s ∈ f) : tendsto m f (@nhds β (generate_from g) b) := by rw [nhds_generate_from]; exact (tendsto_infi.2 $ assume s, tendsto_infi.2 $ assume ⟨hbs, hsg⟩, tendsto_principal.2 $ h s hsg hbs) /-- Construct a topology on α given the filter of neighborhoods of each point of α. -/ protected def mk_of_nhds (n : α → filter α) : topological_space α := { is_open := λs, ∀a∈s, s ∈ n a, is_open_univ := assume x h, univ_mem, is_open_inter := assume s t hs ht x ⟨hxs, hxt⟩, inter_mem (hs x hxs) (ht x hxt), is_open_sUnion := assume s hs a ⟨x, hx, hxa⟩, mem_of_superset (hs x hx _ hxa) (set.subset_sUnion_of_mem hx) } lemma nhds_mk_of_nhds (n : α → filter α) (a : α) (h₀ : pure ≤ n) (h₁ : ∀{a s}, s ∈ n a → ∃ t ∈ n a, t ⊆ s ∧ ∀a' ∈ t, s ∈ n a') : @nhds α (topological_space.mk_of_nhds n) a = n a := begin letI := topological_space.mk_of_nhds n, refine le_antisymm (assume s hs, _) (assume s hs, _), { have h₀ : {b | s ∈ n b} ⊆ s := assume b hb, mem_pure.1 $ h₀ b hb, have h₁ : {b | s ∈ n b} ∈ 𝓝 a, { refine is_open.mem_nhds (assume b (hb : s ∈ n b), _) hs, rcases h₁ hb with ⟨t, ht, hts, h⟩, exact mem_of_superset ht h }, exact mem_of_superset h₁ h₀ }, { rcases (@mem_nhds_iff α (topological_space.mk_of_nhds n) _ _).1 hs with ⟨t, hts, ht, hat⟩, exact (n a).sets_of_superset (ht _ hat) hts }, end lemma nhds_mk_of_nhds_filter_basis (B : α → filter_basis α) (a : α) (h₀ : ∀ x (n ∈ B x), x ∈ n) (h₁ : ∀ x (n ∈ B x), ∃ n₁ ∈ B x, n₁ ⊆ n ∧ ∀ x' ∈ n₁, ∃ n₂ ∈ B x', n₂ ⊆ n) : @nhds α (topological_space.mk_of_nhds (λ x, (B x).filter)) a = (B a).filter := begin rw topological_space.nhds_mk_of_nhds; intros x n hn; obtain ⟨m, hm₁, hm₂⟩ := (B x).mem_filter_iff.mp hn, { exact hm₂ (h₀ _ _ hm₁), }, { obtain ⟨n₁, hn₁, hn₂, hn₃⟩ := h₁ x m hm₁, refine ⟨n₁, (B x).mem_filter_of_mem hn₁, hn₂.trans hm₂, λ x' hx', (B x').mem_filter_iff.mp _⟩, obtain ⟨n₂, hn₄, hn₅⟩ := hn₃ x' hx', exact ⟨n₂, hn₄, hn₅.trans hm₂⟩, }, end end topological_space section lattice variables {α : Type u} {β : Type v} /-- The inclusion ordering on topologies on α. We use it to get a complete lattice instance via the Galois insertion method, but the partial order that we will eventually impose on `topological_space α` is the reverse one. -/ def tmp_order : partial_order (topological_space α) := { le := λt s, t.is_open ≤ s.is_open, le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₁ h₂, le_refl := assume t, le_refl t.is_open, le_trans := assume a b c h₁ h₂, @le_trans _ _ a.is_open b.is_open c.is_open h₁ h₂ } local attribute [instance] tmp_order /- We'll later restate this lemma in terms of the correct order on `topological_space α`. -/ private lemma generate_from_le_iff_subset_is_open {g : set (set α)} {t : topological_space α} : topological_space.generate_from g ≤ t ↔ g ⊆ {s | t.is_open s} := iff.intro (assume ht s hs, ht _ $ topological_space.generate_open.basic s hs) (assume hg s hs, hs.rec_on (assume v hv, hg hv) t.is_open_univ (assume u v _ _, t.is_open_inter u v) (assume k _, t.is_open_sUnion k)) /-- If `s` equals the collection of open sets in the topology it generates, then `s` defines a topology. -/ protected def mk_of_closure (s : set (set α)) (hs : {u | (topological_space.generate_from s).is_open u} = s) : topological_space α := { is_open := λu, u ∈ s, is_open_univ := hs ▸ topological_space.generate_open.univ, is_open_inter := hs ▸ topological_space.generate_open.inter, is_open_sUnion := hs ▸ topological_space.generate_open.sUnion } lemma mk_of_closure_sets {s : set (set α)} {hs : {u | (topological_space.generate_from s).is_open u} = s} : mk_of_closure s hs = topological_space.generate_from s := topological_space_eq hs.symm /-- The Galois insertion between `set (set α)` and `topological_space α` whose lower part sends a collection of subsets of α to the topology they generate, and whose upper part sends a topology to its collection of open subsets. -/ def gi_generate_from (α : Type*) : galois_insertion topological_space.generate_from (λt:topological_space α, {s | t.is_open s}) := { gc := assume g t, generate_from_le_iff_subset_is_open, le_l_u := assume ts s hs, topological_space.generate_open.basic s hs, choice := λg hg, mk_of_closure g (subset.antisymm hg $ generate_from_le_iff_subset_is_open.1 $ le_rfl), choice_eq := assume s hs, mk_of_closure_sets } lemma generate_from_mono {α} {g₁ g₂ : set (set α)} (h : g₁ ⊆ g₂) : topological_space.generate_from g₁ ≤ topological_space.generate_from g₂ := (gi_generate_from _).gc.monotone_l h lemma generate_from_set_of_is_open (t : topological_space α) : topological_space.generate_from {s | t.is_open s} = t := (gi_generate_from α).l_u_eq t lemma left_inverse_generate_from : function.left_inverse topological_space.generate_from (λ t : topological_space α, {s | t.is_open s}) := (gi_generate_from α).left_inverse_l_u lemma generate_from_surjective : function.surjective (topological_space.generate_from : set (set α) → topological_space α) := (gi_generate_from α).l_surjective lemma set_of_is_open_injective : function.injective (λ t : topological_space α, {s | t.is_open s}) := (gi_generate_from α).u_injective /-- The "temporary" order `tmp_order` on `topological_space α`, i.e. the inclusion order, is a complete lattice. (Note that later `topological_space α` will equipped with the dual order to `tmp_order`). -/ def tmp_complete_lattice {α : Type u} : complete_lattice (topological_space α) := (gi_generate_from α).lift_complete_lattice instance : has_le (topological_space α) := { le := λ t s, s.is_open ≤ t.is_open } protected lemma topological_space.le_def {α} {t s : topological_space α} : t ≤ s ↔ s.is_open ≤ t.is_open := iff.rfl /-- The ordering on topologies on the type `α`. `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ instance : partial_order (topological_space α) := { le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₂ h₁, le_refl := assume t, le_refl t.is_open, le_trans := assume a b c h₁ h₂, topological_space.le_def.mpr (le_trans h₂ h₁), ..topological_space.has_le } lemma le_generate_from_iff_subset_is_open {g : set (set α)} {t : topological_space α} : t ≤ topological_space.generate_from g ↔ g ⊆ {s | t.is_open s} := generate_from_le_iff_subset_is_open /-- Topologies on `α` form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. The infimum of a collection of topologies is the topology generated by all their open sets, while the supremum is the topology whose open sets are those sets open in every member of the collection. -/ instance : complete_lattice (topological_space α) := @order_dual.complete_lattice _ tmp_complete_lattice lemma is_open_implies_is_open_iff {a b : topological_space α} : (∀ s, a.is_open s → b.is_open s) ↔ b ≤ a := iff.rfl /-- A topological space is discrete if every set is open, that is, its topology equals the discrete topology `⊥`. -/ class discrete_topology (α : Type*) [t : topological_space α] : Prop := (eq_bot [] : t = ⊥) @[priority 100] instance discrete_topology_bot (α : Type*) : @discrete_topology α ⊥ := { eq_bot := rfl } @[simp] lemma is_open_discrete [topological_space α] [discrete_topology α] (s : set α) : is_open s := (discrete_topology.eq_bot α).symm ▸ trivial @[simp] lemma is_closed_discrete [topological_space α] [discrete_topology α] (s : set α) : is_closed s := is_open_compl_iff.1 $ (discrete_topology.eq_bot α).symm ▸ trivial @[nontriviality] lemma continuous_of_discrete_topology [topological_space α] [discrete_topology α] [topological_space β] {f : α → β} : continuous f := continuous_def.2 $ λs hs, is_open_discrete _ lemma nhds_bot (α : Type*) : (@nhds α ⊥) = pure := begin refine le_antisymm _ (@pure_le_nhds α ⊥), assume a s hs, exact @is_open.mem_nhds α ⊥ a s trivial hs end lemma nhds_discrete (α : Type*) [topological_space α] [discrete_topology α] : (@nhds α _) = pure := (discrete_topology.eq_bot α).symm ▸ nhds_bot α lemma mem_nhds_discrete [topological_space α] [discrete_topology α] {x : α} {s : set α} : s ∈ 𝓝 x ↔ x ∈ s := by rw [nhds_discrete, mem_pure] lemma le_of_nhds_le_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x ≤ @nhds α t₂ x) : t₁ ≤ t₂ := assume s, show @is_open α t₂ s → @is_open α t₁ s, by { simp only [is_open_iff_nhds, le_principal_iff], exact assume hs a ha, h _ $ hs _ ha } lemma eq_of_nhds_eq_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x = @nhds α t₂ x) : t₁ = t₂ := le_antisymm (le_of_nhds_le_nhds $ assume x, le_of_eq $ h x) (le_of_nhds_le_nhds $ assume x, le_of_eq $ (h x).symm) lemma eq_bot_of_singletons_open {t : topological_space α} (h : ∀ x, t.is_open {x}) : t = ⊥ := bot_unique $ λ s hs, bUnion_of_singleton s ▸ is_open_bUnion (λ x _, h x) lemma forall_open_iff_discrete {X : Type*} [topological_space X] : (∀ s : set X, is_open s) ↔ discrete_topology X := ⟨λ h, ⟨by { ext U , show is_open U ↔ true, simp [h U] }⟩, λ a, @is_open_discrete _ _ a⟩ lemma singletons_open_iff_discrete {X : Type*} [topological_space X] : (∀ a : X, is_open ({a} : set X)) ↔ discrete_topology X := ⟨λ h, ⟨eq_bot_of_singletons_open h⟩, λ a _, @is_open_discrete _ _ a _⟩ end lattice section galois_connection variables {α : Type*} {β : Type*} {γ : Type*} /-- Given `f : α → β` and a topology on `β`, the induced topology on `α` is the collection of sets that are preimages of some open set in `β`. This is the coarsest topology that makes `f` continuous. -/ def topological_space.induced {α : Type u} {β : Type v} (f : α → β) (t : topological_space β) : topological_space α := { is_open := λs, ∃s', t.is_open s' ∧ f ⁻¹' s' = s, is_open_univ := ⟨univ, t.is_open_univ, preimage_univ⟩, is_open_inter := by rintro s₁ s₂ ⟨s'₁, hs₁, rfl⟩ ⟨s'₂, hs₂, rfl⟩; exact ⟨s'₁ ∩ s'₂, t.is_open_inter _ _ hs₁ hs₂, preimage_inter⟩, is_open_sUnion := assume s h, begin simp only [classical.skolem] at h, cases h with f hf, apply exists.intro (⋃(x : set α) (h : x ∈ s), f x h), simp only [sUnion_eq_bUnion, preimage_Union, (λx h, (hf x h).right)], refine ⟨_, rfl⟩, exact (@is_open_Union β _ t _ $ assume i, show is_open (⋃h, f i h), from @is_open_Union β _ t _ $ assume h, (hf i h).left) end } lemma is_open_induced_iff [t : topological_space β] {s : set α} {f : α → β} : @is_open α (t.induced f) s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) := iff.rfl lemma is_open_induced_iff' [t : topological_space β] {s : set α} {f : α → β} : (t.induced f).is_open s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) := iff.rfl lemma is_closed_induced_iff [t : topological_space β] {s : set α} {f : α → β} : @is_closed α (t.induced f) s ↔ (∃t, is_closed t ∧ f ⁻¹' t = s) := begin simp only [← is_open_compl_iff, is_open_induced_iff], exact compl_surjective.exists.trans (by simp only [preimage_compl, compl_inj_iff]) end /-- Given `f : α → β` and a topology on `α`, the coinduced topology on `β` is defined such that `s:set β` is open if the preimage of `s` is open. This is the finest topology that makes `f` continuous. -/ def topological_space.coinduced {α : Type u} {β : Type v} (f : α → β) (t : topological_space α) : topological_space β := { is_open := λs, t.is_open (f ⁻¹' s), is_open_univ := by rw preimage_univ; exact t.is_open_univ, is_open_inter := assume s₁ s₂ h₁ h₂, by rw preimage_inter; exact t.is_open_inter _ _ h₁ h₂, is_open_sUnion := assume s h, by rw [preimage_sUnion]; exact (@is_open_Union _ _ t _ $ assume i, show is_open (⋃ (H : i ∈ s), f ⁻¹' i), from @is_open_Union _ _ t _ $ assume hi, h i hi) } lemma is_open_coinduced {t : topological_space α} {s : set β} {f : α → β} : @is_open β (topological_space.coinduced f t) s ↔ is_open (f ⁻¹' s) := iff.rfl lemma preimage_nhds_coinduced [topological_space α] {π : α → β} {s : set β} {a : α} (hs : s ∈ @nhds β (topological_space.coinduced π ‹_›) (π a)) : π ⁻¹' s ∈ 𝓝 a := begin letI := topological_space.coinduced π ‹_›, rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩, exact mem_nhds_iff.mpr ⟨π ⁻¹' V, set.preimage_mono hVs, V_op, mem_V⟩ end variables {t t₁ t₂ : topological_space α} {t' : topological_space β} {f : α → β} {g : β → α} lemma continuous.coinduced_le (h : @continuous α β t t' f) : t.coinduced f ≤ t' := λ s hs, (continuous_def.1 h s hs : _) lemma coinduced_le_iff_le_induced {f : α → β} {tα : topological_space α} {tβ : topological_space β} : tα.coinduced f ≤ tβ ↔ tα ≤ tβ.induced f := iff.intro (assume h s ⟨t, ht, hst⟩, hst ▸ h _ ht) (assume h s hs, show tα.is_open (f ⁻¹' s), from h _ ⟨s, hs, rfl⟩) lemma continuous.le_induced (h : @continuous α β t t' f) : t ≤ t'.induced f := coinduced_le_iff_le_induced.1 h.coinduced_le lemma gc_coinduced_induced (f : α → β) : galois_connection (topological_space.coinduced f) (topological_space.induced f) := assume f g, coinduced_le_iff_le_induced lemma induced_mono (h : t₁ ≤ t₂) : t₁.induced g ≤ t₂.induced g := (gc_coinduced_induced g).monotone_u h lemma coinduced_mono (h : t₁ ≤ t₂) : t₁.coinduced f ≤ t₂.coinduced f := (gc_coinduced_induced f).monotone_l h @[simp] lemma induced_top : (⊤ : topological_space α).induced g = ⊤ := (gc_coinduced_induced g).u_top @[simp] lemma induced_inf : (t₁ ⊓ t₂).induced g = t₁.induced g ⊓ t₂.induced g := (gc_coinduced_induced g).u_inf @[simp] lemma induced_infi {ι : Sort w} {t : ι → topological_space α} : (⨅i, t i).induced g = (⨅i, (t i).induced g) := (gc_coinduced_induced g).u_infi @[simp] lemma coinduced_bot : (⊥ : topological_space α).coinduced f = ⊥ := (gc_coinduced_induced f).l_bot @[simp] lemma coinduced_sup : (t₁ ⊔ t₂).coinduced f = t₁.coinduced f ⊔ t₂.coinduced f := (gc_coinduced_induced f).l_sup @[simp] lemma coinduced_supr {ι : Sort w} {t : ι → topological_space α} : (⨆i, t i).coinduced f = (⨆i, (t i).coinduced f) := (gc_coinduced_induced f).l_supr lemma induced_id [t : topological_space α] : t.induced id = t := topological_space_eq $ funext $ assume s, propext $ ⟨assume ⟨s', hs, h⟩, h ▸ hs, assume hs, ⟨s, hs, rfl⟩⟩ lemma induced_compose [tγ : topological_space γ] {f : α → β} {g : β → γ} : (tγ.induced g).induced f = tγ.induced (g ∘ f) := topological_space_eq $ funext $ assume s, propext $ ⟨assume ⟨s', ⟨s, hs, h₂⟩, h₁⟩, h₁ ▸ h₂ ▸ ⟨s, hs, rfl⟩, assume ⟨s, hs, h⟩, ⟨preimage g s, ⟨s, hs, rfl⟩, h ▸ rfl⟩⟩ lemma induced_const [t : topological_space α] {x : α} : t.induced (λ y : β, x) = ⊤ := le_antisymm le_top (@continuous_const β α ⊤ t x).le_induced lemma coinduced_id [t : topological_space α] : t.coinduced id = t := topological_space_eq rfl lemma coinduced_compose [tα : topological_space α] {f : α → β} {g : β → γ} : (tα.coinduced f).coinduced g = tα.coinduced (g ∘ f) := topological_space_eq rfl lemma equiv.induced_symm {α β : Type*} (e : α ≃ β) : topological_space.induced e.symm = topological_space.coinduced e := begin ext t U, split, { rintros ⟨V, hV, rfl⟩, change t.is_open (e ⁻¹' _), rwa [← preimage_comp, ← equiv.coe_trans, equiv.self_trans_symm] }, { intros hU, refine ⟨e ⁻¹' U, hU, _⟩, rw [← preimage_comp, ← equiv.coe_trans, equiv.symm_trans_self, equiv.coe_refl, preimage_id] } end lemma equiv.coinduced_symm {α β : Type*} (e : α ≃ β) : topological_space.coinduced e.symm = topological_space.induced e := by rw [← e.symm.induced_symm, e.symm_symm] end galois_connection /- constructions using the complete lattice structure -/ section constructions open topological_space variables {α : Type u} {β : Type v} instance inhabited_topological_space {α : Type u} : inhabited (topological_space α) := ⟨⊤⟩ @[priority 100] instance subsingleton.unique_topological_space [subsingleton α] : unique (topological_space α) := { default := ⊥, uniq := λ t, eq_bot_of_singletons_open $ λ x, subsingleton.set_cases (@is_open_empty _ t) (@is_open_univ _ t) ({x} : set α) } @[priority 100] instance subsingleton.discrete_topology [t : topological_space α] [subsingleton α] : discrete_topology α := ⟨unique.eq_default t⟩ instance : topological_space empty := ⊥ instance : discrete_topology empty := ⟨rfl⟩ instance : topological_space pempty := ⊥ instance : discrete_topology pempty := ⟨rfl⟩ instance : topological_space punit := ⊥ instance : discrete_topology punit := ⟨rfl⟩ instance : topological_space bool := ⊥ instance : discrete_topology bool := ⟨rfl⟩ instance : topological_space ℕ := ⊥ instance : discrete_topology ℕ := ⟨rfl⟩ instance : topological_space ℤ := ⊥ instance : discrete_topology ℤ := ⟨rfl⟩ instance sierpinski_space : topological_space Prop := generate_from {{true}} lemma continuous_empty_function [topological_space α] [topological_space β] [is_empty β] (f : α → β) : continuous f := by { letI := function.is_empty f, exact continuous_of_discrete_topology } lemma le_generate_from {t : topological_space α} { g : set (set α) } (h : ∀s∈g, is_open s) : t ≤ generate_from g := le_generate_from_iff_subset_is_open.2 h lemma induced_generate_from_eq {α β} {b : set (set β)} {f : α → β} : (generate_from b).induced f = topological_space.generate_from (preimage f '' b) := le_antisymm (le_generate_from $ ball_image_iff.2 $ assume s hs, ⟨s, generate_open.basic _ hs, rfl⟩) (coinduced_le_iff_le_induced.1 $ le_generate_from $ assume s hs, generate_open.basic _ $ mem_image_of_mem _ hs) lemma le_induced_generate_from {α β} [t : topological_space α] {b : set (set β)} {f : α → β} (h : ∀ (a : set β), a ∈ b → is_open (f ⁻¹' a)) : t ≤ induced f (generate_from b) := begin rw induced_generate_from_eq, apply le_generate_from, simp only [mem_image, and_imp, forall_apply_eq_imp_iff₂, exists_imp_distrib], exact h, end /-- This construction is left adjoint to the operation sending a topology on `α` to its neighborhood filter at a fixed point `a : α`. -/ def nhds_adjoint (a : α) (f : filter α) : topological_space α := { is_open := λs, a ∈ s → s ∈ f, is_open_univ := assume s, univ_mem, is_open_inter := assume s t hs ht ⟨has, hat⟩, inter_mem (hs has) (ht hat), is_open_sUnion := assume k hk ⟨u, hu, hau⟩, mem_of_superset (hk u hu hau) (subset_sUnion_of_mem hu) } lemma gc_nhds (a : α) : galois_connection (nhds_adjoint a) (λt, @nhds α t a) := assume f t, by { rw le_nhds_iff, exact ⟨λ H s hs has, H _ has hs, λ H s has hs, H _ hs has⟩ } lemma nhds_mono {t₁ t₂ : topological_space α} {a : α} (h : t₁ ≤ t₂) : @nhds α t₁ a ≤ @nhds α t₂ a := (gc_nhds a).monotone_u h lemma le_iff_nhds {α : Type*} (t t' : topological_space α) : t ≤ t' ↔ ∀ x, @nhds α t x ≤ @nhds α t' x := ⟨λ h x, nhds_mono h, le_of_nhds_le_nhds⟩ lemma nhds_adjoint_nhds {α : Type*} (a : α) (f : filter α) : @nhds α (nhds_adjoint a f) a = pure a ⊔ f := begin ext U, rw mem_nhds_iff, split, { rintros ⟨t, htU, ht, hat⟩, exact ⟨htU hat, mem_of_superset (ht hat) htU⟩}, { rintros ⟨haU, hU⟩, exact ⟨U, subset.rfl, λ h, hU, haU⟩ } end lemma nhds_adjoint_nhds_of_ne {α : Type*} (a : α) (f : filter α) {b : α} (h : b ≠ a) : @nhds α (nhds_adjoint a f) b = pure b := begin apply le_antisymm, { intros U hU, rw mem_nhds_iff, use {b}, simp only [and_true, singleton_subset_iff, mem_singleton], refine ⟨hU, λ ha, (h.symm ha).elim⟩ }, { exact @pure_le_nhds α (nhds_adjoint a f) b }, end lemma is_open_singleton_nhds_adjoint {α : Type*} {a b : α} (f : filter α) (hb : b ≠ a) : @is_open α (nhds_adjoint a f) {b} := begin rw is_open_singleton_iff_nhds_eq_pure, exact nhds_adjoint_nhds_of_ne a f hb end lemma le_nhds_adjoint_iff' {α : Type*} (a : α) (f : filter α) (t : topological_space α) : t ≤ nhds_adjoint a f ↔ @nhds α t a ≤ pure a ⊔ f ∧ ∀ b ≠ a, @nhds α t b = pure b := begin rw le_iff_nhds, split, { intros h, split, { specialize h a, rwa nhds_adjoint_nhds at h }, { intros b hb, apply le_antisymm _ (pure_le_nhds b), specialize h b, rwa nhds_adjoint_nhds_of_ne a f hb at h } }, { rintros ⟨h, h'⟩ b, by_cases hb : b = a, { rwa [hb, nhds_adjoint_nhds] }, { simp [nhds_adjoint_nhds_of_ne a f hb, h' b hb] } } end lemma le_nhds_adjoint_iff {α : Type*} (a : α) (f : filter α) (t : topological_space α) : t ≤ nhds_adjoint a f ↔ (@nhds α t a ≤ pure a ⊔ f ∧ ∀ b, b ≠ a → t.is_open {b}) := begin change _ ↔ _ ∧ ∀ (b : α), b ≠ a → is_open {b}, rw [le_nhds_adjoint_iff', and.congr_right_iff], apply λ h, forall_congr (λ b, _), rw @is_open_singleton_iff_nhds_eq_pure α t b end lemma nhds_infi {ι : Sort*} {t : ι → topological_space α} {a : α} : @nhds α (infi t) a = (⨅i, @nhds α (t i) a) := (gc_nhds a).u_infi lemma nhds_Inf {s : set (topological_space α)} {a : α} : @nhds α (Inf s) a = (⨅t∈s, @nhds α t a) := (gc_nhds a).u_Inf lemma nhds_inf {t₁ t₂ : topological_space α} {a : α} : @nhds α (t₁ ⊓ t₂) a = @nhds α t₁ a ⊓ @nhds α t₂ a := (gc_nhds a).u_inf lemma nhds_top {a : α} : @nhds α ⊤ a = ⊤ := (gc_nhds a).u_top lemma is_open_sup {t₁ t₂ : topological_space α} {s : set α} : @is_open α (t₁ ⊔ t₂) s ↔ @is_open α t₁ s ∧ @is_open α t₂ s := iff.rfl local notation `cont` := @continuous _ _ local notation `tspace` := topological_space open topological_space variables {γ : Type*} {f : α → β} {ι : Sort*} lemma continuous_iff_coinduced_le {t₁ : tspace α} {t₂ : tspace β} : cont t₁ t₂ f ↔ coinduced f t₁ ≤ t₂ := continuous_def.trans iff.rfl lemma continuous_iff_le_induced {t₁ : tspace α} {t₂ : tspace β} : cont t₁ t₂ f ↔ t₁ ≤ induced f t₂ := iff.trans continuous_iff_coinduced_le (gc_coinduced_induced f _ _) theorem continuous_generated_from {t : tspace α} {b : set (set β)} (h : ∀s∈b, is_open (f ⁻¹' s)) : cont t (generate_from b) f := continuous_iff_coinduced_le.2 $ le_generate_from h @[continuity] lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f := by { rw continuous_def, assume s h, exact ⟨_, h, rfl⟩ } lemma continuous_induced_rng {g : γ → α} {t₂ : tspace β} {t₁ : tspace γ} : cont t₁ (induced f t₂) g ↔ cont t₁ t₂ (f ∘ g) := by simp only [continuous_iff_le_induced, induced_compose] lemma continuous_coinduced_rng {t : tspace α} : cont t (coinduced f t) f := by { rw continuous_def, assume s h, exact h } lemma continuous_coinduced_dom {g : β → γ} {t₁ : tspace α} {t₂ : tspace γ} : cont (coinduced f t₁) t₂ g ↔ cont t₁ t₂ (g ∘ f) := by simp only [continuous_iff_coinduced_le, coinduced_compose] lemma continuous_le_dom {t₁ t₂ : tspace α} {t₃ : tspace β} (h₁ : t₂ ≤ t₁) (h₂ : cont t₁ t₃ f) : cont t₂ t₃ f := begin rw continuous_def at h₂ ⊢, assume s h, exact h₁ _ (h₂ s h) end lemma continuous_le_rng {t₁ : tspace α} {t₂ t₃ : tspace β} (h₁ : t₂ ≤ t₃) (h₂ : cont t₁ t₂ f) : cont t₁ t₃ f := begin rw continuous_def at h₂ ⊢, assume s h, exact h₂ s (h₁ s h) end lemma continuous_sup_dom {t₁ t₂ : tspace α} {t₃ : tspace β} : cont (t₁ ⊔ t₂) t₃ f ↔ cont t₁ t₃ f ∧ cont t₂ t₃ f := by simp only [continuous_iff_le_induced, sup_le_iff] lemma continuous_sup_rng_left {t₁ : tspace α} {t₃ t₂ : tspace β} : cont t₁ t₂ f → cont t₁ (t₂ ⊔ t₃) f := continuous_le_rng le_sup_left lemma continuous_sup_rng_right {t₁ : tspace α} {t₃ t₂ : tspace β} : cont t₁ t₃ f → cont t₁ (t₂ ⊔ t₃) f := continuous_le_rng le_sup_right lemma continuous_Sup_dom {T : set (tspace α)} {t₂ : tspace β} : cont (Sup T) t₂ f ↔ ∀ t ∈ T, cont t t₂ f := by simp only [continuous_iff_le_induced, Sup_le_iff] lemma continuous_Sup_rng {t₁ : tspace α} {t₂ : set (tspace β)} {t : tspace β} (h₁ : t ∈ t₂) (hf : cont t₁ t f) : cont t₁ (Sup t₂) f := continuous_iff_coinduced_le.2 $ le_Sup_of_le h₁ $ continuous_iff_coinduced_le.1 hf lemma continuous_supr_dom {t₁ : ι → tspace α} {t₂ : tspace β} : cont (supr t₁) t₂ f ↔ ∀ i, cont (t₁ i) t₂ f := by simp only [continuous_iff_le_induced, supr_le_iff] lemma continuous_supr_rng {t₁ : tspace α} {t₂ : ι → tspace β} {i : ι} (h : cont t₁ (t₂ i) f) : cont t₁ (supr t₂) f := continuous_Sup_rng ⟨i, rfl⟩ h lemma continuous_inf_rng {t₁ : tspace α} {t₂ t₃ : tspace β} : cont t₁ (t₂ ⊓ t₃) f ↔ cont t₁ t₂ f ∧ cont t₁ t₃ f := by simp only [continuous_iff_coinduced_le, le_inf_iff] lemma continuous_inf_dom_left {t₁ t₂ : tspace α} {t₃ : tspace β} : cont t₁ t₃ f → cont (t₁ ⊓ t₂) t₃ f := continuous_le_dom inf_le_left lemma continuous_inf_dom_right {t₁ t₂ : tspace α} {t₃ : tspace β} : cont t₂ t₃ f → cont (t₁ ⊓ t₂) t₃ f := continuous_le_dom inf_le_right lemma continuous_Inf_dom {t₁ : set (tspace α)} {t₂ : tspace β} {t : tspace α} (h₁ : t ∈ t₁) : cont t t₂ f → cont (Inf t₁) t₂ f := continuous_le_dom $ Inf_le h₁ lemma continuous_Inf_rng {t₁ : tspace α} {T : set (tspace β)} : cont t₁ (Inf T) f ↔ ∀ t ∈ T, cont t₁ t f := by simp only [continuous_iff_coinduced_le, le_Inf_iff] lemma continuous_infi_dom {t₁ : ι → tspace α} {t₂ : tspace β} {i : ι} : cont (t₁ i) t₂ f → cont (infi t₁) t₂ f := continuous_le_dom $ infi_le _ _ lemma continuous_infi_rng {t₁ : tspace α} {t₂ : ι → tspace β} : cont t₁ (infi t₂) f ↔ ∀ i, cont t₁ (t₂ i) f := by simp only [continuous_iff_coinduced_le, le_infi_iff] @[continuity] lemma continuous_bot {t : tspace β} : cont ⊥ t f := continuous_iff_le_induced.2 $ bot_le @[continuity] lemma continuous_top {t : tspace α} : cont t ⊤ f := continuous_iff_coinduced_le.2 $ le_top lemma continuous_id_iff_le {t t' : tspace α} : cont t t' id ↔ t ≤ t' := @continuous_def _ _ t t' id lemma continuous_id_of_le {t t' : tspace α} (h : t ≤ t') : cont t t' id := continuous_id_iff_le.2 h /- 𝓝 in the induced topology -/ theorem mem_nhds_induced [T : topological_space α] (f : β → α) (a : β) (s : set β) : s ∈ @nhds β (topological_space.induced f T) a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s := begin simp only [mem_nhds_iff, is_open_induced_iff, exists_prop, set.mem_set_of_eq], split, { rintros ⟨u, usub, ⟨v, openv, ueq⟩, au⟩, exact ⟨v, ⟨v, set.subset.refl v, openv, by rwa ←ueq at au⟩, by rw ueq; exact usub⟩ }, rintros ⟨u, ⟨v, vsubu, openv, amem⟩, finvsub⟩, exact ⟨f ⁻¹' v, set.subset.trans (set.preimage_mono vsubu) finvsub, ⟨⟨v, openv, rfl⟩, amem⟩⟩ end theorem nhds_induced [T : topological_space α] (f : β → α) (a : β) : @nhds β (topological_space.induced f T) a = comap f (𝓝 (f a)) := by { ext s, rw [mem_nhds_induced, mem_comap] } lemma induced_iff_nhds_eq [tα : topological_space α] [tβ : topological_space β] (f : β → α) : tβ = tα.induced f ↔ ∀ b, 𝓝 b = comap f (𝓝 $ f b) := ⟨λ h a, h.symm ▸ nhds_induced f a, λ h, eq_of_nhds_eq_nhds $ λ x, by rw [h, nhds_induced]⟩ theorem map_nhds_induced_of_surjective [T : topological_space α] {f : β → α} (hf : function.surjective f) (a : β) : map f (@nhds β (topological_space.induced f T) a) = 𝓝 (f a) := by rw [nhds_induced, map_comap_of_surjective hf] end constructions section induced open topological_space variables {α : Type*} {β : Type*} variables [t : topological_space β] {f : α → β} theorem is_open_induced_eq {s : set α} : @is_open _ (induced f t) s ↔ s ∈ preimage f '' {s | is_open s} := iff.rfl theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (f ⁻¹' s) := ⟨s, h, rfl⟩ lemma map_nhds_induced_eq (a : α) : map f (@nhds α (induced f t) a) = 𝓝[range f] (f a) := by rw [nhds_induced, filter.map_comap, nhds_within] lemma map_nhds_induced_of_mem {a : α} (h : range f ∈ 𝓝 (f a)) : map f (@nhds α (induced f t) a) = 𝓝 (f a) := by rw [nhds_induced, filter.map_comap_of_mem h] lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α} : a ∈ @closure α (topological_space.induced f t) s ↔ f a ∈ closure (f '' s) := by simp only [mem_closure_iff_frequently, nhds_induced, frequently_comap, mem_image, and_comm] lemma is_closed_induced_iff' [t : topological_space β] {f : α → β} {s : set α} : @is_closed α (t.induced f) s ↔ ∀ a, f a ∈ closure (f '' s) → a ∈ s := by simp only [← closure_subset_iff_is_closed, subset_def, closure_induced] end induced section sierpinski variables {α : Type*} [topological_space α] @[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) := topological_space.generate_open.basic _ (mem_singleton _) @[simp] lemma nhds_true : 𝓝 true = pure true := le_antisymm (le_pure_iff.2 $ is_open_singleton_true.mem_nhds $ mem_singleton _) (pure_le_nhds _) @[simp] lemma nhds_false : 𝓝 false = ⊤ := topological_space.nhds_generate_from.trans $ by simp [@and.comm (_ ∈ _)] lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} := ⟨assume h : continuous p, have is_open (p ⁻¹' {true}), from is_open_singleton_true.preimage h, by simpa [preimage, eq_true] using this, assume h : is_open {x | p x}, continuous_generated_from $ assume s (hs : s = {true}), by simp [hs, preimage, eq_true, h]⟩ lemma is_open_iff_continuous_mem {s : set α} : is_open s ↔ continuous (λ x, x ∈ s) := continuous_Prop.symm end sierpinski section infi variables {α : Type u} {ι : Sort v} lemma generate_from_union (a₁ a₂ : set (set α)) : topological_space.generate_from (a₁ ∪ a₂) = topological_space.generate_from a₁ ⊓ topological_space.generate_from a₂ := @galois_connection.l_sup _ (topological_space α)ᵒᵈ a₁ a₂ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) lemma set_of_is_open_sup (t₁ t₂ : topological_space α) : {s | (t₁ ⊔ t₂).is_open s} = {s | t₁.is_open s} ∩ {s | t₂.is_open s} := @galois_connection.u_inf _ (topological_space α)ᵒᵈ t₁ t₂ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) lemma generate_from_Union {f : ι → set (set α)} : topological_space.generate_from (⋃ i, f i) = (⨅ i, topological_space.generate_from (f i)) := @galois_connection.l_supr _ (topological_space α)ᵒᵈ _ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) f lemma set_of_is_open_supr {t : ι → topological_space α} : {s | (⨆ i, t i).is_open s} = ⋂ i, {s | (t i).is_open s} := @galois_connection.u_infi _ (topological_space α)ᵒᵈ _ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) t lemma generate_from_sUnion {S : set (set (set α))} : topological_space.generate_from (⋃₀ S) = (⨅ s ∈ S, topological_space.generate_from s) := @galois_connection.l_Sup _ (topological_space α)ᵒᵈ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) S lemma set_of_is_open_Sup {T : set (topological_space α)} : {s | (Sup T).is_open s} = ⋂ t ∈ T, {s | (t : topological_space α).is_open s} := @galois_connection.u_Inf _ (topological_space α)ᵒᵈ _ _ _ _ (λ g t, generate_from_le_iff_subset_is_open) T lemma generate_from_union_is_open (a b : topological_space α) : topological_space.generate_from ({s | a.is_open s} ∪ {s | b.is_open s}) = a ⊓ b := @galois_insertion.l_sup_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b lemma generate_from_Union_is_open (f : ι → topological_space α) : topological_space.generate_from (⋃ i, {s | (f i).is_open s}) = ⨅ i, (f i) := @galois_insertion.l_supr_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f lemma generate_from_inter (a b : topological_space α) : topological_space.generate_from ({s | a.is_open s} ∩ {s | b.is_open s}) = a ⊔ b := @galois_insertion.l_inf_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b lemma generate_from_Inter (f : ι → topological_space α) : topological_space.generate_from (⋂ i, {s | (f i).is_open s}) = ⨆ i, (f i) := @galois_insertion.l_infi_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f lemma generate_from_Inter_of_generate_from_eq_self (f : ι → set (set α)) (hf : ∀ i, {s | (topological_space.generate_from (f i)).is_open s} = f i) : topological_space.generate_from (⋂ i, (f i)) = ⨆ i, topological_space.generate_from (f i) := @galois_insertion.l_infi_of_ul_eq_self _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f hf variables {t : ι → topological_space α} lemma is_open_supr_iff {s : set α} : @is_open _ (⨆ i, t i) s ↔ ∀ i, @is_open _ (t i) s := show s ∈ set_of (supr t).is_open ↔ s ∈ {x : set α | ∀ (i : ι), (t i).is_open x}, by simp [set_of_is_open_supr] lemma is_closed_supr_iff {s : set α} : @is_closed _ (⨆ i, t i) s ↔ ∀ i, @is_closed _ (t i) s := by simp [← is_open_compl_iff, is_open_supr_iff] end infi