Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 37,904 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.tactic

/-!
# Ordering on topologies and (co)induced topologies

Topologies on a fixed type `α` are ordered, by reverse inclusion.
That is, for topologies `t₁` and `t₂` on `α`, we write `t₁ ≤ t₂`
if every set open in `t₂` is also open in `t₁`.
(One also calls `t₁` finer than `t₂`, and `t₂` coarser than `t₁`.)

Any function `f : α → β` induces
       `induced f : topological_space β → topological_space α`
and  `coinduced f : topological_space α → topological_space β`.
Continuity, the ordering on topologies and (co)induced topologies are
related as follows:
* The identity map (α, t₁) → (α, t₂) is continuous iff t₁ ≤ t₂.
* A map f : (α, t) → (β, u) is continuous
    iff             t ≤ induced f u   (`continuous_iff_le_induced`)
    iff coinduced f t ≤ u             (`continuous_iff_coinduced_le`).

Topologies on α form a complete lattice, with ⊥ the discrete topology
and ⊤ the indiscrete topology.

For a function f : α → β, (coinduced f, induced f) is a Galois connection
between topologies on α and topologies on β.

## Implementation notes

There is a Galois insertion between topologies on α (with the inclusion ordering)
and all collections of sets in α. The complete lattice structure on topologies
on α is defined as the reverse of the one obtained via this Galois insertion.

## Tags

finer, coarser, induced topology, coinduced topology

-/

open set filter classical
open_locale classical topological_space filter

universes u v w

namespace topological_space
variables {α : Type u}

/-- The open sets of the least topology containing a collection of basic sets. -/
inductive generate_open (g : set (set α)) : set α → Prop
| basic  : ∀s∈g, generate_open s
| univ   : generate_open univ
| inter  : ∀s t, generate_open s → generate_open t → generate_open (s ∩ t)
| sUnion : ∀k, (∀s∈k, generate_open s) → generate_open (⋃₀ k)

/-- The smallest topological space containing the collection `g` of basic sets -/
def generate_from (g : set (set α)) : topological_space α :=
{ is_open        := generate_open g,
  is_open_univ   := generate_open.univ,
  is_open_inter  := generate_open.inter,
  is_open_sUnion := generate_open.sUnion }

lemma is_open_generate_from_of_mem {g : set (set α)} {s : set α} (hs : s ∈ g) :
  @is_open _ (generate_from g) s :=
generate_open.basic s hs

lemma nhds_generate_from {g : set (set α)} {a : α} :
  @nhds α (generate_from g) a = (⨅s∈{s | a ∈ s ∧ s ∈ g}, 𝓟 s) :=
by rw nhds_def; exact le_antisymm
  (binfi_mono $ λ s ⟨as, sg⟩, ⟨as, generate_open.basic _ sg⟩)
  (le_infi $ assume s, le_infi $ assume ⟨as, hs⟩,
    begin
      revert as, clear_, induction hs,
      case generate_open.basic : s hs
      { exact assume as, infi_le_of_le s $ infi_le _ ⟨as, hs⟩ },
      case generate_open.univ
      { rw [principal_univ],
        exact assume _, le_top },
      case generate_open.inter : s t hs' ht' hs ht
      { exact assume ⟨has, hat⟩, calc _ ≤ 𝓟 s ⊓ 𝓟 t : le_inf (hs has) (ht hat)
          ... = _ : inf_principal },
      case generate_open.sUnion : k hk' hk
      { exact λ ⟨t, htk, hat⟩, calc _ ≤ 𝓟 t : hk t htk hat
          ... ≤ _ : le_principal_iff.2 $ subset_sUnion_of_mem htk }
    end)

lemma tendsto_nhds_generate_from {β : Type*} {m : α → β} {f : filter α} {g : set (set β)} {b : β}
  (h : ∀s∈g, b ∈ s → m ⁻¹' s ∈ f) : tendsto m f (@nhds β (generate_from g) b) :=
by rw [nhds_generate_from]; exact
  (tendsto_infi.2 $ assume s, tendsto_infi.2 $ assume ⟨hbs, hsg⟩, tendsto_principal.2 $ h s hsg hbs)

/-- Construct a topology on α given the filter of neighborhoods of each point of α. -/
protected def mk_of_nhds (n : α → filter α) : topological_space α :=
{ is_open        := λs, ∀a∈s, s ∈ n a,
  is_open_univ   := assume x h, univ_mem,
  is_open_inter  := assume s t hs ht x ⟨hxs, hxt⟩, inter_mem (hs x hxs) (ht x hxt),
  is_open_sUnion := assume s hs ax, hx, hxa⟩,
    mem_of_superset (hs x hx _ hxa) (set.subset_sUnion_of_mem hx) }

lemma nhds_mk_of_nhds (n : α → filter α) (a : α)
  (h₀ : pure ≤ n) (h₁ : ∀{a s}, s ∈ n a → ∃ t ∈ n a, t ⊆ s ∧ ∀a' ∈ t, s ∈ n a') :
  @nhds α (topological_space.mk_of_nhds n) a = n a :=
begin
  letI := topological_space.mk_of_nhds n,
  refine le_antisymm (assume s hs, _) (assume s hs, _),
  { have h₀ : {b | s ∈ n b} ⊆ s := assume b hb, mem_pure.1 $ h₀ b hb,
    have h₁ : {b | s ∈ n b} ∈ 𝓝 a,
    { refine is_open.mem_nhds (assume b (hb : s ∈ n b), _) hs,
      rcases h₁ hb with ⟨t, ht, hts, h⟩,
      exact mem_of_superset ht h },
    exact mem_of_superset h₁ h₀ },
  { rcases (@mem_nhds_iff α (topological_space.mk_of_nhds n) _ _).1 hs with ⟨t, hts, ht, hat⟩,
    exact (n a).sets_of_superset (ht _ hat) hts },
end

lemma nhds_mk_of_nhds_filter_basis (B : α → filter_basis α) (a : α) (h₀ : ∀ x (n ∈ B x), x ∈ n)
  (h₁ : ∀ x (n ∈ B x), ∃ n₁ ∈ B x, n₁ ⊆ n ∧ ∀ x' ∈ n₁, ∃ n₂ ∈ B x', n₂ ⊆ n) :
  @nhds α (topological_space.mk_of_nhds (λ x, (B x).filter)) a = (B a).filter :=
begin
  rw topological_space.nhds_mk_of_nhds;
  intros x n hn;
  obtain ⟨m, hm₁, hm₂⟩ := (B x).mem_filter_iff.mp hn,
  { exact hm₂ (h₀ _ _ hm₁), },
  { obtain ⟨n₁, hn₁, hn₂, hn₃⟩ := h₁ x m hm₁,
    refine ⟨n₁, (B x).mem_filter_of_mem hn₁, hn₂.trans hm₂, λ x' hx', (B x').mem_filter_iff.mp _⟩,
    obtain ⟨n₂, hn₄, hn₅⟩ := hn₃ x' hx',
    exact ⟨n₂, hn₄, hn₅.trans hm₂⟩, },
end

end topological_space

section lattice

variables {α : Type u} {β : Type v}

/-- The inclusion ordering on topologies on α. We use it to get a complete
   lattice instance via the Galois insertion method, but the partial order
   that we will eventually impose on `topological_space α` is the reverse one. -/
def tmp_order : partial_order (topological_space α) :=
{ le          := λt s, t.is_open ≤ s.is_open,
  le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₁ h₂,
  le_refl     := assume t, le_refl t.is_open,
  le_trans    := assume a b c h₁ h₂, @le_trans _ _ a.is_open b.is_open c.is_open h₁ h₂ }

local attribute [instance] tmp_order

/- We'll later restate this lemma in terms of the correct order on `topological_space α`. -/
private lemma generate_from_le_iff_subset_is_open {g : set (set α)} {t : topological_space α} :
  topological_space.generate_from g ≤ t ↔ g ⊆ {s | t.is_open s} :=
iff.intro
  (assume ht s hs, ht _ $ topological_space.generate_open.basic s hs)
  (assume hg s hs, hs.rec_on (assume v hv, hg hv)
    t.is_open_univ (assume u v _ _, t.is_open_inter u v) (assume k _, t.is_open_sUnion k))

/-- If `s` equals the collection of open sets in the topology it generates,
  then `s` defines a topology. -/
protected def mk_of_closure (s : set (set α))
  (hs : {u | (topological_space.generate_from s).is_open u} = s) : topological_space α :=
{ is_open        := λu, u ∈ s,
  is_open_univ   := hs ▸ topological_space.generate_open.univ,
  is_open_inter  := hs ▸ topological_space.generate_open.inter,
  is_open_sUnion := hs ▸ topological_space.generate_open.sUnion }

lemma mk_of_closure_sets {s : set (set α)}
  {hs : {u | (topological_space.generate_from s).is_open u} = s} :
  mk_of_closure s hs = topological_space.generate_from s :=
topological_space_eq hs.symm

/-- The Galois insertion between `set (set α)` and `topological_space α` whose lower part
  sends a collection of subsets of α to the topology they generate, and whose upper part
  sends a topology to its collection of open subsets. -/
def gi_generate_from (α : Type*) :
  galois_insertion topological_space.generate_from (λt:topological_space α, {s | t.is_open s}) :=
{ gc        := assume g t, generate_from_le_iff_subset_is_open,
  le_l_u    := assume ts s hs, topological_space.generate_open.basic s hs,
  choice    := λg hg, mk_of_closure g
    (subset.antisymm hg $ generate_from_le_iff_subset_is_open.1 $ le_rfl),
  choice_eq := assume s hs, mk_of_closure_sets }

lemma generate_from_mono {α} {g₁ g₂ : set (set α)} (h : g₁ ⊆ g₂) :
  topological_space.generate_from g₁ ≤ topological_space.generate_from g₂ :=
(gi_generate_from _).gc.monotone_l h

lemma generate_from_set_of_is_open (t : topological_space α) :
  topological_space.generate_from {s | t.is_open s} = t :=
(gi_generate_from α).l_u_eq t

lemma left_inverse_generate_from :
  function.left_inverse topological_space.generate_from
    (λ t : topological_space α, {s | t.is_open s}) :=
(gi_generate_from α).left_inverse_l_u

lemma generate_from_surjective :
  function.surjective (topological_space.generate_from : set (set α) → topological_space α) :=
(gi_generate_from α).l_surjective

lemma set_of_is_open_injective :
  function.injective (λ t : topological_space α, {s | t.is_open s}) :=
(gi_generate_from α).u_injective

/-- The "temporary" order `tmp_order` on `topological_space α`, i.e. the inclusion order, is a
complete lattice.  (Note that later `topological_space α` will equipped with the dual order to
`tmp_order`). -/
def tmp_complete_lattice {α : Type u} : complete_lattice (topological_space α) :=
(gi_generate_from α).lift_complete_lattice

instance : has_le (topological_space α) :=
{ le          := λ t s, s.is_open ≤ t.is_open }

protected lemma topological_space.le_def {α} {t s : topological_space α} :
  t ≤ s ↔ s.is_open ≤ t.is_open := iff.rfl

/-- The ordering on topologies on the type `α`.
  `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/
instance : partial_order (topological_space α) :=
{ le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₂ h₁,
  le_refl     := assume t, le_refl t.is_open,
  le_trans    := assume a b c h₁ h₂, topological_space.le_def.mpr (le_trans h₂ h₁),
  ..topological_space.has_le }

lemma le_generate_from_iff_subset_is_open {g : set (set α)} {t : topological_space α} :
  t ≤ topological_space.generate_from g ↔ g ⊆ {s | t.is_open s} :=
generate_from_le_iff_subset_is_open

/-- Topologies on `α` form a complete lattice, with `⊥` the discrete topology
  and `⊤` the indiscrete topology. The infimum of a collection of topologies
  is the topology generated by all their open sets, while the supremum is the
  topology whose open sets are those sets open in every member of the collection. -/
instance : complete_lattice (topological_space α) :=
@order_dual.complete_lattice _ tmp_complete_lattice

lemma is_open_implies_is_open_iff {a b : topological_space α} :
  (∀ s, a.is_open s → b.is_open s) ↔ ba :=
iff.rfl

/-- A topological space is discrete if every set is open, that is,
  its topology equals the discrete topology `⊥`. -/
class discrete_topology (α : Type*) [t : topological_space α] : Prop :=
(eq_bot [] : t = ⊥)

@[priority 100]
instance discrete_topology_bot (α : Type*) : @discrete_topology α ⊥ :=
{ eq_bot := rfl }

@[simp] lemma is_open_discrete [topological_space α] [discrete_topology α] (s : set α) :
  is_open s :=
(discrete_topology.eq_bot α).symm ▸ trivial

@[simp] lemma is_closed_discrete [topological_space α] [discrete_topology α] (s : set α) :
  is_closed s :=
is_open_compl_iff.1 $ (discrete_topology.eq_bot α).symm ▸ trivial

@[nontriviality]
lemma continuous_of_discrete_topology [topological_space α] [discrete_topology α]
  [topological_space β] {f : α → β} : continuous f :=
continuous_def.2 $ λs hs, is_open_discrete _

lemma nhds_bot (α : Type*) : (@nhds α ⊥) = pure :=
begin
  refine le_antisymm _ (@pure_le_nhds α ⊥),
  assume a s hs,
  exact @is_open.mem_nhds α ⊥ a s trivial hs
end

lemma nhds_discrete (α : Type*) [topological_space α] [discrete_topology α] : (@nhds α _) = pure :=
(discrete_topology.eq_bot α).symm ▸ nhds_bot α

lemma mem_nhds_discrete [topological_space α] [discrete_topology α] {x : α} {s : set α} :
  s ∈ 𝓝 xx ∈ s :=
by rw [nhds_discrete, mem_pure]

lemma le_of_nhds_le_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x ≤ @nhds α t₂ x) :
  t₁ ≤ t₂ :=
assume s, show @is_open α t₂ s → @is_open α t₁ s,
  by { simp only [is_open_iff_nhds, le_principal_iff],  exact assume hs a ha, h _ $ hs _ ha }

lemma eq_of_nhds_eq_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x = @nhds α t₂ x) :
  t₁ = t₂ :=
le_antisymm
  (le_of_nhds_le_nhds $ assume x, le_of_eq $ h x)
  (le_of_nhds_le_nhds $ assume x, le_of_eq $ (h x).symm)

lemma eq_bot_of_singletons_open {t : topological_space α} (h : ∀ x, t.is_open {x}) : t = ⊥ :=
bot_unique $ λ s hs, bUnion_of_singleton s ▸ is_open_bUnion (λ x _, h x)

lemma forall_open_iff_discrete {X : Type*} [topological_space X] :
  (∀ s : set X, is_open s) ↔ discrete_topology X :=
⟨λ h, ⟨by { ext U , show is_open U ↔ true, simp [h U] }⟩, λ a, @is_open_discrete _ _ a⟩

lemma singletons_open_iff_discrete {X : Type*} [topological_space X] :
  (∀ a : X, is_open ({a} : set X)) ↔ discrete_topology X :=
⟨λ h, ⟨eq_bot_of_singletons_open h⟩, λ a _, @is_open_discrete _ _ a _⟩

end lattice

section galois_connection
variables {α : Type*} {β : Type*} {γ : Type*}

/-- Given `f : α → β` and a topology on `β`, the induced topology on `α` is the collection of
  sets that are preimages of some open set in `β`. This is the coarsest topology that
  makes `f` continuous. -/
def topological_space.induced {α : Type u} {β : Type v} (f : α → β) (t : topological_space β) :
  topological_space α :=
{ is_open        := λs, ∃s', t.is_open s'f ⁻¹' s' = s,
  is_open_univ   := ⟨univ, t.is_open_univ, preimage_univ⟩,
  is_open_inter  := by rintro s₁ s₂ ⟨s'₁, hs₁, rfl⟩ ⟨s'₂, hs₂, rfl⟩;
    exact ⟨s'₁ ∩ s'₂, t.is_open_inter _ _ hs₁ hs₂, preimage_inter⟩,
  is_open_sUnion := assume s h,
  begin
    simp only [classical.skolem] at h,
    cases h with f hf,
    apply exists.intro (⋃(x : set α) (h : x ∈ s), f x h),
    simp only [sUnion_eq_bUnion, preimage_Union, (λx h, (hf x h).right)], refine ⟨_, rfl⟩,
    exact (@is_open_Union β _ t _ $ assume i,
      show is_open (⋃h, f i h), from @is_open_Union β _ t _ $ assume h, (hf i h).left)
  end }

lemma is_open_induced_iff [t : topological_space β] {s : set α} {f : α → β} :
  @is_open α (t.induced f) s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) :=
iff.rfl

lemma is_open_induced_iff' [t : topological_space β] {s : set α} {f : α → β} :
  (t.induced f).is_open s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) :=
iff.rfl

lemma is_closed_induced_iff [t : topological_space β] {s : set α} {f : α → β} :
  @is_closed α (t.induced f) s ↔ (∃t, is_closed t ∧ f ⁻¹' t = s) :=
begin
  simp only [← is_open_compl_iff, is_open_induced_iff],
  exact compl_surjective.exists.trans (by simp only [preimage_compl, compl_inj_iff])
end

/-- Given `f : α → β` and a topology on `α`, the coinduced topology on `β` is defined
  such that `s:set β` is open if the preimage of `s` is open. This is the finest topology that
  makes `f` continuous. -/
def topological_space.coinduced {α : Type u} {β : Type v} (f : α → β) (t : topological_space α) :
  topological_space β :=
{ is_open        := λs, t.is_open (f ⁻¹' s),
  is_open_univ   := by rw preimage_univ; exact t.is_open_univ,
  is_open_inter  := assume s₁ s₂ h₁ h₂, by rw preimage_inter; exact t.is_open_inter _ _ h₁ h₂,
  is_open_sUnion := assume s h, by rw [preimage_sUnion]; exact (@is_open_Union _ _ t _ $ assume i,
    show is_open (⋃ (H : i ∈ s), f ⁻¹' i), from
      @is_open_Union _ _ t _ $ assume hi, h i hi) }

lemma is_open_coinduced {t : topological_space α} {s : set β} {f : α → β} :
  @is_open β (topological_space.coinduced f t) s ↔ is_open (f ⁻¹' s) :=
iff.rfl

lemma preimage_nhds_coinduced [topological_space α] {π : α → β} {s : set β}
  {a : α} (hs : s ∈ @nhds β (topological_space.coinduced π ‹_›) (π a)) : π ⁻¹' s ∈ 𝓝 a :=
begin
  letI := topological_space.coinduced π ‹_›,
  rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩,
  exact mem_nhds_iff.mpr ⟨π ⁻¹' V, set.preimage_mono hVs, V_op, mem_V⟩
end

variables {t t₁ t₂ : topological_space α} {t' : topological_space β} {f : α → β} {g : β → α}

lemma continuous.coinduced_le (h : @continuous α β t t' f) :
  t.coinduced f ≤ t' :=
λ s hs, (continuous_def.1 h s hs : _)

lemma coinduced_le_iff_le_induced {f : α → β} {tα : topological_space α}
  {tβ : topological_space β} :
  tα.coinduced f ≤ tβ ↔ tα ≤ tβ.induced f :=
iff.intro
  (assume h s ⟨t, ht, hst⟩, hst ▸ h _ ht)
  (assume h s hs, show tα.is_open (f ⁻¹' s), from h _ ⟨s, hs, rfl⟩)

lemma continuous.le_induced (h : @continuous α β t t' f) :
  t ≤ t'.induced f :=
coinduced_le_iff_le_induced.1 h.coinduced_le

lemma gc_coinduced_induced (f : α → β) :
  galois_connection (topological_space.coinduced f) (topological_space.induced f) :=
assume f g, coinduced_le_iff_le_induced

lemma induced_mono (h : t₁ ≤ t₂) : t₁.induced g ≤ t₂.induced g :=
(gc_coinduced_induced g).monotone_u h

lemma coinduced_mono (h : t₁ ≤ t₂) : t₁.coinduced f ≤ t₂.coinduced f :=
(gc_coinduced_induced f).monotone_l h

@[simp] lemma induced_top : (⊤ : topological_space α).induced g = ⊤ :=
(gc_coinduced_induced g).u_top

@[simp] lemma induced_inf : (t₁ ⊓ t₂).induced g = t₁.induced g ⊓ t₂.induced g :=
(gc_coinduced_induced g).u_inf

@[simp] lemma induced_infi {ι : Sort w} {t : ι → topological_space α} :
  (⨅i, t i).induced g = (⨅i, (t i).induced g) :=
(gc_coinduced_induced g).u_infi

@[simp] lemma coinduced_bot : (⊥ : topological_space α).coinduced f = ⊥ :=
(gc_coinduced_induced f).l_bot

@[simp] lemma coinduced_sup : (t₁ ⊔ t₂).coinduced f = t₁.coinduced f ⊔ t₂.coinduced f :=
(gc_coinduced_induced f).l_sup

@[simp] lemma coinduced_supr {ι : Sort w} {t : ι → topological_space α} :
  (⨆i, t i).coinduced f = (⨆i, (t i).coinduced f) :=
(gc_coinduced_induced f).l_supr

lemma induced_id [t : topological_space α] : t.induced id = t :=
topological_space_eq $ funext $ assume s, propext $
  ⟨assume ⟨s', hs, h⟩, h ▸ hs, assume hs, ⟨s, hs, rfl⟩⟩

lemma induced_compose [tγ : topological_space γ]
  {f : α → β} {g : β → γ} : (tγ.induced g).induced f = tγ.induced (g ∘ f) :=
topological_space_eq $ funext $ assume s, propext $
  ⟨assume ⟨s', ⟨s, hs, h₂⟩, h₁⟩, h₁ ▸ h₂ ▸ ⟨s, hs, rfl⟩,
    assume ⟨s, hs, h⟩, ⟨preimage g s, ⟨s, hs, rfl⟩, h ▸ rfl⟩⟩

lemma induced_const [t : topological_space α] {x : α} :
  t.induced (λ y : β, x) = ⊤ :=
le_antisymm le_top (@continuous_const β α ⊤ t x).le_induced

lemma coinduced_id [t : topological_space α] : t.coinduced id = t :=
topological_space_eq rfl

lemma coinduced_compose [tα : topological_space α]
  {f : α → β} {g : β → γ} : (tα.coinduced f).coinduced g = tα.coinduced (g ∘ f) :=
topological_space_eq rfl

lemma equiv.induced_symm {α β : Type*} (e : α ≃ β) :
  topological_space.induced e.symm = topological_space.coinduced e :=
begin
  ext t U,
  split,
  { rintros ⟨V, hV, rfl⟩,
    change t.is_open (e ⁻¹' _),
    rwa [← preimage_comp, ← equiv.coe_trans, equiv.self_trans_symm] },
  { intros hU,
    refine ⟨e ⁻¹' U, hU, _⟩,
    rw [← preimage_comp, ← equiv.coe_trans, equiv.symm_trans_self, equiv.coe_refl, preimage_id] }
end

lemma equiv.coinduced_symm {α β : Type*} (e : α ≃ β) :
  topological_space.coinduced e.symm = topological_space.induced e :=
by rw [← e.symm.induced_symm, e.symm_symm]

end galois_connection

/- constructions using the complete lattice structure -/
section constructions
open topological_space

variables {α : Type u} {β : Type v}

instance inhabited_topological_space {α : Type u} : inhabited (topological_space α) :=
⟨⊤⟩

@[priority 100]
instance subsingleton.unique_topological_space [subsingleton α] :
  unique (topological_space α) :=
{ default := ⊥,
  uniq := λ t, eq_bot_of_singletons_open $ λ x, subsingleton.set_cases
    (@is_open_empty _ t) (@is_open_univ _ t) ({x} : set α) }

@[priority 100]
instance subsingleton.discrete_topology [t : topological_space α] [subsingleton α] :
  discrete_topology α :=
⟨unique.eq_default t⟩

instance : topological_space empty := ⊥
instance : discrete_topology empty := ⟨rfl⟩
instance : topological_space pempty := ⊥
instance : discrete_topology pempty := ⟨rfl⟩
instance : topological_space punit := ⊥
instance : discrete_topology punit := ⟨rfl⟩
instance : topological_space bool := ⊥
instance : discrete_topology bool := ⟨rfl⟩
instance : topological_space ℕ := ⊥
instance : discrete_topology ℕ := ⟨rfl⟩
instance : topological_space ℤ := ⊥
instance : discrete_topology ℤ := ⟨rfl⟩

instance sierpinski_space : topological_space Prop :=
generate_from {{true}}

lemma continuous_empty_function [topological_space α] [topological_space β] [is_empty β]
  (f : α → β) : continuous f :=
by { letI := function.is_empty f, exact continuous_of_discrete_topology }

lemma le_generate_from {t : topological_space α} { g : set (set α) } (h : ∀s∈g, is_open s) :
  t ≤ generate_from g :=
le_generate_from_iff_subset_is_open.2 h

lemma induced_generate_from_eq {α β} {b : set (set β)} {f : α → β} :
  (generate_from b).induced f = topological_space.generate_from (preimage f '' b) :=
le_antisymm
  (le_generate_from $ ball_image_iff.2 $ assume s hs, ⟨s, generate_open.basic _ hs, rfl⟩)
  (coinduced_le_iff_le_induced.1 $ le_generate_from $ assume s hs,
    generate_open.basic _ $ mem_image_of_mem _ hs)

lemma le_induced_generate_from {α β} [t : topological_space α] {b : set (set β)}
  {f : α → β} (h : ∀ (a : set β), a ∈ b → is_open (f ⁻¹' a)) : t ≤ induced f (generate_from b) :=
begin
  rw induced_generate_from_eq,
  apply le_generate_from,
  simp only [mem_image, and_imp, forall_apply_eq_imp_iff₂, exists_imp_distrib],
  exact h,
end

/-- This construction is left adjoint to the operation sending a topology on `α`
  to its neighborhood filter at a fixed point `a : α`. -/
def nhds_adjoint (a : α) (f : filter α) : topological_space α :=
{ is_open        := λs, a ∈ s → s ∈ f,
  is_open_univ   := assume s, univ_mem,
  is_open_inter  := assume s t hs ht ⟨has, hat⟩, inter_mem (hs has) (ht hat),
  is_open_sUnion := assume k hk ⟨u, hu, hau⟩, mem_of_superset (hk u hu hau)
    (subset_sUnion_of_mem hu) }

lemma gc_nhds (a : α) :
  galois_connection (nhds_adjoint a) (λt, @nhds α t a) :=
assume f t, by { rw le_nhds_iff, exact ⟨λ H s hs has, H _ has hs, λ H s has hs, H _ hs has⟩ }

lemma nhds_mono {t₁ t₂ : topological_space α} {a : α} (h : t₁ ≤ t₂) :
  @nhds α t₁ a ≤ @nhds α t₂ a := (gc_nhds a).monotone_u h

lemma le_iff_nhds {α : Type*} (t t' : topological_space α) :
  t ≤ t' ↔ ∀ x, @nhds α t x ≤ @nhds α t' x :=
⟨λ h x, nhds_mono h, le_of_nhds_le_nhds⟩

lemma nhds_adjoint_nhds {α : Type*} (a : α) (f : filter α) :
  @nhds α (nhds_adjoint a f) a = pure a ⊔ f :=
begin
  ext U,
  rw mem_nhds_iff,
  split,
  { rintros ⟨t, htU, ht, hat⟩,
    exact ⟨htU hat, mem_of_superset (ht hat) htU⟩},
  { rintros ⟨haU, hU⟩,
    exact ⟨U, subset.rfl, λ h, hU, haU⟩ }
end

lemma nhds_adjoint_nhds_of_ne {α : Type*} (a : α) (f : filter α) {b : α} (h : b ≠ a) :
  @nhds α (nhds_adjoint a f) b = pure b :=
begin
  apply le_antisymm,
  { intros U hU,
    rw mem_nhds_iff,
    use {b},
    simp only [and_true, singleton_subset_iff, mem_singleton],
    refine ⟨hU, λ ha, (h.symm ha).elim⟩ },
  { exact @pure_le_nhds α (nhds_adjoint a f) b },
end

lemma is_open_singleton_nhds_adjoint {α : Type*} {a b : α} (f : filter α) (hb : b ≠ a) :
  @is_open α (nhds_adjoint a f) {b} :=
begin
  rw is_open_singleton_iff_nhds_eq_pure,
  exact nhds_adjoint_nhds_of_ne a f hb
end

lemma le_nhds_adjoint_iff' {α : Type*} (a : α) (f : filter α) (t : topological_space α) :
  t ≤ nhds_adjoint a f ↔ @nhds α t a ≤ pure af ∧ ∀ ba, @nhds α t b = pure b :=
begin
  rw le_iff_nhds,
  split,
  { intros h,
    split,
    { specialize h a,
      rwa nhds_adjoint_nhds at h },
    { intros b hb,
      apply le_antisymm _ (pure_le_nhds b),
      specialize h b,
      rwa nhds_adjoint_nhds_of_ne a f hb at h } },
  { rintros ⟨h, h'⟩ b,
    by_cases hb : b = a,
    { rwa [hb, nhds_adjoint_nhds] },
    { simp [nhds_adjoint_nhds_of_ne a f hb, h' b hb] } }
end

lemma le_nhds_adjoint_iff {α : Type*} (a : α) (f : filter α) (t : topological_space α) :
  t ≤ nhds_adjoint a f ↔ (@nhds α t a ≤ pure af ∧ ∀ b, ba → t.is_open {b}) :=
begin
  change _ ↔ _ ∧ ∀ (b : α), ba → is_open {b},
  rw [le_nhds_adjoint_iff', and.congr_right_iff],
  apply λ h, forall_congr (λ b,  _),
  rw @is_open_singleton_iff_nhds_eq_pure α t b
end

lemma nhds_infi {ι : Sort*} {t : ι → topological_space α} {a : α} :
  @nhds α (infi t) a = (⨅i, @nhds α (t i) a) := (gc_nhds a).u_infi

lemma nhds_Inf {s : set (topological_space α)} {a : α} :
  @nhds α (Inf s) a = (⨅t∈s, @nhds α t a) := (gc_nhds a).u_Inf

lemma nhds_inf {t₁ t₂ : topological_space α} {a : α} :
  @nhds α (t₁ ⊓ t₂) a = @nhds α t₁ a ⊓ @nhds α t₂ a := (gc_nhds a).u_inf

lemma nhds_top {a : α} : @nhds α ⊤ a = ⊤ := (gc_nhds a).u_top

lemma is_open_sup {t₁ t₂ : topological_space α} {s : set α} :
  @is_open α (t₁ ⊔ t₂) s ↔ @is_open α t₁ s ∧ @is_open α t₂ s :=
iff.rfl

local notation `cont` := @continuous _ _
local notation `tspace` := topological_space
open topological_space

variables {γ : Type*} {f : α → β} {ι : Sort*}

lemma continuous_iff_coinduced_le {t₁ : tspace α} {t₂ : tspace β} :
  cont t₁ t₂ f ↔ coinduced f t₁ ≤ t₂ :=
continuous_def.trans iff.rfl

lemma continuous_iff_le_induced {t₁ : tspace α} {t₂ : tspace β} :
  cont t₁ t₂ f ↔ t₁ ≤ induced f t₂ :=
iff.trans continuous_iff_coinduced_le (gc_coinduced_induced f _ _)

theorem continuous_generated_from {t : tspace α} {b : set (set β)}
  (h : ∀s∈b, is_open (f ⁻¹' s)) : cont t (generate_from b) f :=
continuous_iff_coinduced_le.2 $ le_generate_from h

@[continuity]
lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f :=
by { rw continuous_def, assume s h, exact ⟨_, h, rfl⟩ }

lemma continuous_induced_rng {g : γ → α} {t₂ : tspace β} {t₁ : tspace γ} :
  cont t₁ (induced f t₂) g ↔ cont t₁ t₂ (f ∘ g) :=
by simp only [continuous_iff_le_induced, induced_compose]

lemma continuous_coinduced_rng {t : tspace α} : cont t (coinduced f t) f :=
by { rw continuous_def, assume s h, exact h }

lemma continuous_coinduced_dom {g : β → γ} {t₁ : tspace α} {t₂ : tspace γ} :
  cont (coinduced f t₁) t₂ g ↔ cont t₁ t₂ (g ∘ f) :=
by simp only [continuous_iff_coinduced_le, coinduced_compose]

lemma continuous_le_dom {t₁ t₂ : tspace α} {t₃ : tspace β}
  (h₁ : t₂ ≤ t₁) (h₂ : cont t₁ t₃ f) : cont t₂ t₃ f :=
begin
  rw continuous_def at h₂ ⊢,
  assume s h,
  exact h₁ _ (h₂ s h)
end

lemma continuous_le_rng {t₁ : tspace α} {t₂ t₃ : tspace β}
  (h₁ : t₂ ≤ t₃) (h₂ : cont t₁ t₂ f) : cont t₁ t₃ f :=
begin
  rw continuous_def at h₂ ⊢,
  assume s h,
  exact h₂ s (h₁ s h)
end

lemma continuous_sup_dom {t₁ t₂ : tspace α} {t₃ : tspace β} :
  cont (t₁ ⊔ t₂) t₃ f ↔ cont t₁ t₃ f ∧ cont t₂ t₃ f :=
by simp only [continuous_iff_le_induced, sup_le_iff]

lemma continuous_sup_rng_left {t₁ : tspace α} {t₃ t₂ : tspace β} :
  cont t₁ t₂ f → cont t₁ (t₂ ⊔ t₃) f :=
continuous_le_rng le_sup_left

lemma continuous_sup_rng_right {t₁ : tspace α} {t₃ t₂ : tspace β} :
  cont t₁ t₃ f → cont t₁ (t₂ ⊔ t₃) f :=
continuous_le_rng le_sup_right

lemma continuous_Sup_dom {T : set (tspace α)} {t₂ : tspace β} :
  cont (Sup T) t₂ f ↔ ∀ t ∈ T, cont t t₂ f :=
by simp only [continuous_iff_le_induced, Sup_le_iff]

lemma continuous_Sup_rng {t₁ : tspace α} {t₂ : set (tspace β)} {t : tspace β}
  (h₁ : t ∈ t₂) (hf : cont t₁ t f) : cont t₁ (Sup t₂) f :=
continuous_iff_coinduced_le.2 $ le_Sup_of_le h₁ $ continuous_iff_coinduced_le.1 hf

lemma continuous_supr_dom {t₁ : ι → tspace α} {t₂ : tspace β} :
  cont (supr t₁) t₂ f ↔  ∀ i, cont (t₁ i) t₂ f :=
by simp only [continuous_iff_le_induced, supr_le_iff]

lemma continuous_supr_rng {t₁ : tspace α} {t₂ : ι → tspace β} {i : ι}
  (h : cont t₁ (t₂ i) f) : cont t₁ (supr t₂) f :=
continuous_Sup_rng ⟨i, rfl⟩ h

lemma continuous_inf_rng {t₁ : tspace α} {t₂ t₃ : tspace β} :
  cont t₁ (t₂ ⊓ t₃) f ↔ cont t₁ t₂ f ∧ cont t₁ t₃ f :=
by simp only [continuous_iff_coinduced_le, le_inf_iff]

lemma continuous_inf_dom_left {t₁ t₂ : tspace α} {t₃ : tspace β} :
  cont t₁ t₃ f → cont (t₁ ⊓ t₂) t₃ f :=
continuous_le_dom inf_le_left

lemma continuous_inf_dom_right {t₁ t₂ : tspace α} {t₃ : tspace β} :
  cont t₂ t₃ f → cont (t₁ ⊓ t₂) t₃ f :=
continuous_le_dom inf_le_right

lemma continuous_Inf_dom {t₁ : set (tspace α)} {t₂ : tspace β} {t : tspace α} (h₁ : t ∈ t₁) :
  cont t t₂ f → cont (Inf t₁) t₂ f :=
continuous_le_dom $ Inf_le h₁

lemma continuous_Inf_rng {t₁ : tspace α} {T : set (tspace β)} :
  cont t₁ (Inf T) f ↔ ∀ t ∈ T, cont t₁ t f :=
by simp only [continuous_iff_coinduced_le, le_Inf_iff]

lemma continuous_infi_dom {t₁ : ι → tspace α} {t₂ : tspace β} {i : ι} :
  cont (t₁ i) t₂ f → cont (infi t₁) t₂ f :=
continuous_le_dom $ infi_le _ _

lemma continuous_infi_rng {t₁ : tspace α} {t₂ : ι → tspace β} :
  cont t₁ (infi t₂) f ↔ ∀ i, cont t₁ (t₂ i) f :=
by simp only [continuous_iff_coinduced_le, le_infi_iff]

@[continuity] lemma continuous_bot {t : tspace β} : cont ⊥ t f :=
continuous_iff_le_induced.2 $ bot_le

@[continuity] lemma continuous_top {t : tspace α} : cont t ⊤ f :=
continuous_iff_coinduced_le.2 $ le_top

lemma continuous_id_iff_le {t t' : tspace α} : cont t t' id ↔ t ≤ t' :=
@continuous_def _ _ t t' id

lemma continuous_id_of_le {t t' : tspace α} (h : t ≤ t') : cont t t' id :=
continuous_id_iff_le.2 h

/- 𝓝 in the induced topology -/

theorem mem_nhds_induced [T : topological_space α] (f : β → α) (a : β) (s : set β) :
  s ∈ @nhds β (topological_space.induced f T) a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s :=
begin
  simp only [mem_nhds_iff, is_open_induced_iff, exists_prop, set.mem_set_of_eq],
  split,
  { rintros ⟨u, usub, ⟨v, openv, ueq⟩, au⟩,
    exact ⟨v, ⟨v, set.subset.refl v, openv, by rwa ←ueq at au⟩, by rw ueq; exact usub⟩ },
  rintros ⟨u, ⟨v, vsubu, openv, amem⟩, finvsub⟩,
  exact ⟨f ⁻¹' v, set.subset.trans (set.preimage_mono vsubu) finvsub, ⟨⟨v, openv, rfl⟩, amem⟩⟩
end

theorem nhds_induced [T : topological_space α] (f : β → α) (a : β) :
  @nhds β (topological_space.induced f T) a = comap f (𝓝 (f a)) :=
by { ext s, rw [mem_nhds_induced, mem_comap] }

lemma induced_iff_nhds_eq [tα : topological_space α] [tβ : topological_space β] (f : β → α) :
tβ = tα.induced f ↔ ∀ b, 𝓝 b = comap f (𝓝 $ f b) :=
⟨λ h a, h.symm ▸ nhds_induced f a, λ h, eq_of_nhds_eq_nhds $ λ x, by rw [h, nhds_induced]⟩

theorem map_nhds_induced_of_surjective [T : topological_space α]
    {f : β → α} (hf : function.surjective f) (a : β) :
  map f (@nhds β (topological_space.induced f T) a) = 𝓝 (f a) :=
by rw [nhds_induced, map_comap_of_surjective hf]

end constructions

section induced
open topological_space
variables {α : Type*} {β : Type*}
variables [t : topological_space β] {f : α → β}

theorem is_open_induced_eq {s : set α} :
  @is_open _ (induced f t) s ↔ s ∈ preimage f '' {s | is_open s} :=
iff.rfl

theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (f ⁻¹' s) :=
⟨s, h, rfl⟩

lemma map_nhds_induced_eq (a : α) : map f (@nhds α (induced f t) a) = 𝓝[range f] (f a) :=
by rw [nhds_induced, filter.map_comap, nhds_within]

lemma map_nhds_induced_of_mem {a : α} (h : range f ∈ 𝓝 (f a)) :
  map f (@nhds α (induced f t) a) = 𝓝 (f a) :=
by rw [nhds_induced, filter.map_comap_of_mem h]

lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α} :
  a ∈ @closure α (topological_space.induced f t) s ↔ f a ∈ closure (f '' s) :=
by simp only [mem_closure_iff_frequently, nhds_induced, frequently_comap, mem_image, and_comm]

lemma is_closed_induced_iff' [t : topological_space β] {f : α → β} {s : set α} :
  @is_closed α (t.induced f) s ↔ ∀ a, f a ∈ closure (f '' s) → a ∈ s :=
by simp only [← closure_subset_iff_is_closed, subset_def, closure_induced]

end induced

section sierpinski
variables {α : Type*} [topological_space α]

@[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) :=
topological_space.generate_open.basic _ (mem_singleton _)

@[simp] lemma nhds_true : 𝓝 true = pure true :=
le_antisymm (le_pure_iff.2 $ is_open_singleton_true.mem_nhds $ mem_singleton _) (pure_le_nhds _)

@[simp] lemma nhds_false : 𝓝 false = ⊤ :=
topological_space.nhds_generate_from.trans $ by simp [@and.comm (_ ∈ _)]

lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} :=
⟨assume h : continuous p,
  have is_open (p ⁻¹' {true}),
    from is_open_singleton_true.preimage h,
  by simpa [preimage, eq_true] using this,
  assume h : is_open {x | p x},
  continuous_generated_from $ assume s (hs : s = {true}),
    by simp [hs, preimage, eq_true, h]⟩

lemma is_open_iff_continuous_mem {s : set α} : is_open s ↔ continuous (λ x, x ∈ s) :=
continuous_Prop.symm

end sierpinski

section infi
variables {α : Type u} {ι : Sort v}

lemma generate_from_union (aa₂ : set (set α)) :
  topological_space.generate_from (a₁ ∪ a₂) =
    topological_space.generate_from a₁ ⊓ topological_space.generate_from a₂ :=
@galois_connection.l_sup _ (topological_space α)ᵒᵈ aa₂ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open)

lemma set_of_is_open_sup (t₁ t₂ : topological_space α) :
  {s | (t₁ ⊔ t₂).is_open s} = {s | t₁.is_open s} ∩ {s | t₂.is_open s} :=
@galois_connection.u_inf _ (topological_space α)ᵒᵈ t₁ t₂ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open)

lemma generate_from_Union {f : ι → set (set α)} :
  topological_space.generate_from (⋃ i, f i) = (⨅ i, topological_space.generate_from (f i)) :=
@galois_connection.l_supr _ (topological_space α)ᵒᵈ _ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open) f

lemma set_of_is_open_supr {t : ι → topological_space α} :
  {s | (⨆ i, t i).is_open s} = ⋂ i, {s | (t i).is_open s} :=
@galois_connection.u_infi _ (topological_space α)ᵒᵈ _ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open) t

lemma generate_from_sUnion {S : set (set (set α))} :
  topological_space.generate_from (⋃₀ S) = (⨅ s ∈ S, topological_space.generate_from s) :=
@galois_connection.l_Sup _ (topological_space α)ᵒᵈ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open) S

lemma set_of_is_open_Sup {T : set (topological_space α)} :
  {s | (Sup T).is_open s} = ⋂ t ∈ T, {s | (t : topological_space α).is_open s} :=
@galois_connection.u_Inf _ (topological_space α)ᵒᵈ _ _ _ _
  (λ g t, generate_from_le_iff_subset_is_open) T

lemma generate_from_union_is_open (a b : topological_space α) :
  topological_space.generate_from ({s | a.is_open s} ∪ {s | b.is_open s}) = ab :=
@galois_insertion.l_sup_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b

lemma generate_from_Union_is_open (f : ι → topological_space α) :
  topological_space.generate_from (⋃ i, {s | (f i).is_open s}) = ⨅ i, (f i) :=
@galois_insertion.l_supr_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f

lemma generate_from_inter (a b : topological_space α) :
  topological_space.generate_from ({s | a.is_open s} ∩ {s | b.is_open s}) = ab :=
@galois_insertion.l_inf_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) a b

lemma generate_from_Inter (f : ι → topological_space α) :
  topological_space.generate_from (⋂ i, {s | (f i).is_open s}) = ⨆ i, (f i) :=
@galois_insertion.l_infi_u _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f

lemma generate_from_Inter_of_generate_from_eq_self (f : ι → set (set α))
  (hf : ∀ i, {s | (topological_space.generate_from (f i)).is_open s} = f i) :
  topological_space.generate_from (⋂ i, (f i)) = ⨆ i, topological_space.generate_from (f i) :=
@galois_insertion.l_infi_of_ul_eq_self _ (topological_space α)ᵒᵈ _ _ _ _ (gi_generate_from α) _ f hf

variables {t : ι → topological_space α}

lemma is_open_supr_iff {s : set α} : @is_open _ (⨆ i, t i) s ↔ ∀ i, @is_open _ (t i) s :=
show s ∈ set_of (supr t).is_open ↔ s ∈ {x : set α | ∀ (i : ι), (t i).is_open x},
by simp [set_of_is_open_supr]

lemma is_closed_supr_iff {s : set α} : @is_closed _ (⨆ i, t i) s ↔ ∀ i, @is_closed _ (t i) s :=
by simp [← is_open_compl_iff, is_open_supr_iff]

end infi