Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Heather Macbeth. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Heather Macbeth | |
-/ | |
import topology.algebra.mul_action | |
import topology.metric_space.lipschitz | |
/-! | |
# Compatibility of algebraic operations with metric space structures | |
In this file we define mixin typeclasses `has_lipschitz_mul`, `has_lipschitz_add`, | |
`has_bounded_smul` expressing compatibility of multiplication, addition and scalar-multiplication | |
operations with an underlying metric space structure. The intended use case is to abstract certain | |
properties shared by normed groups and by `R≥0`. | |
## Implementation notes | |
We deduce a `has_continuous_mul` instance from `has_lipschitz_mul`, etc. In principle there should | |
be an intermediate typeclass for uniform spaces, but the algebraic hierarchy there (see | |
`uniform_group`) is structured differently. | |
-/ | |
open_locale nnreal | |
noncomputable theory | |
variables (α β : Type*) [pseudo_metric_space α] [pseudo_metric_space β] | |
section has_lipschitz_mul | |
/-- Class `has_lipschitz_add M` says that the addition `(+) : X × X → X` is Lipschitz jointly in | |
the two arguments. -/ | |
class has_lipschitz_add [add_monoid β] : Prop := | |
( lipschitz_add : ∃ C, lipschitz_with C (λ p : β × β, p.1 + p.2) ) | |
/-- Class `has_lipschitz_mul M` says that the multiplication `(*) : X × X → X` is Lipschitz jointly | |
in the two arguments. -/ | |
@[to_additive] class has_lipschitz_mul [monoid β] : Prop := | |
( lipschitz_mul : ∃ C, lipschitz_with C (λ p : β × β, p.1 * p.2) ) | |
variables [monoid β] | |
/-- The Lipschitz constant of a monoid `β` satisfying `has_lipschitz_mul` -/ | |
@[to_additive "The Lipschitz constant of an `add_monoid` `β` satisfying `has_lipschitz_add`"] | |
def has_lipschitz_mul.C [_i : has_lipschitz_mul β] : ℝ≥0 := | |
classical.some _i.lipschitz_mul | |
variables {β} | |
@[to_additive] lemma lipschitz_with_lipschitz_const_mul_edist [_i : has_lipschitz_mul β] : | |
lipschitz_with (has_lipschitz_mul.C β) (λ p : β × β, p.1 * p.2) := | |
classical.some_spec _i.lipschitz_mul | |
variables [has_lipschitz_mul β] | |
@[to_additive] lemma lipschitz_with_lipschitz_const_mul : | |
∀ p q : β × β, dist (p.1 * p.2) (q.1 * q.2) ≤ (has_lipschitz_mul.C β) * dist p q := | |
begin | |
rw ← lipschitz_with_iff_dist_le_mul, | |
exact lipschitz_with_lipschitz_const_mul_edist, | |
end | |
@[to_additive, priority 100] -- see Note [lower instance priority] | |
instance has_lipschitz_mul.has_continuous_mul : has_continuous_mul β := | |
⟨ lipschitz_with_lipschitz_const_mul_edist.continuous ⟩ | |
@[to_additive] instance submonoid.has_lipschitz_mul (s : submonoid β) : has_lipschitz_mul s := | |
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, begin | |
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, | |
convert lipschitz_with_lipschitz_const_mul_edist ⟨(x₁:β), x₂⟩ ⟨y₁, y₂⟩ using 1 | |
end⟩ } | |
@[to_additive] instance mul_opposite.has_lipschitz_mul : has_lipschitz_mul βᵐᵒᵖ := | |
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, λ ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, | |
(lipschitz_with_lipschitz_const_mul_edist ⟨x₂.unop, x₁.unop⟩ ⟨y₂.unop, y₁.unop⟩).trans_eq | |
(congr_arg _ $ max_comm _ _)⟩ } | |
-- this instance could be deduced from `normed_add_comm_group.has_lipschitz_add`, but we prove it | |
-- separately here so that it is available earlier in the hierarchy | |
instance real.has_lipschitz_add : has_lipschitz_add ℝ := | |
{ lipschitz_add := ⟨2, begin | |
rw lipschitz_with_iff_dist_le_mul, | |
intros p q, | |
simp only [real.dist_eq, prod.dist_eq, prod.fst_sub, prod.snd_sub, nnreal.coe_one, | |
nnreal.coe_bit0], | |
convert le_trans (abs_add (p.1 - q.1) (p.2 - q.2)) _ using 2, | |
{ abel }, | |
have := le_max_left (|p.1 - q.1|) (|p.2 - q.2|), | |
have := le_max_right (|p.1 - q.1|) (|p.2 - q.2|), | |
linarith, | |
end⟩ } | |
-- this instance has the same proof as `add_submonoid.has_lipschitz_add`, but the former can't | |
-- directly be applied here since `ℝ≥0` is a subtype of `ℝ`, not an additive submonoid. | |
instance nnreal.has_lipschitz_add : has_lipschitz_add ℝ≥0 := | |
{ lipschitz_add := ⟨has_lipschitz_add.C ℝ, begin | |
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, | |
convert lipschitz_with_lipschitz_const_add_edist ⟨(x₁:ℝ), x₂⟩ ⟨y₁, y₂⟩ using 1 | |
end⟩ } | |
end has_lipschitz_mul | |
section has_bounded_smul | |
variables [has_zero α] [has_zero β] [has_smul α β] | |
/-- Mixin typeclass on a scalar action of a metric space `α` on a metric space `β` both with | |
distinguished points `0`, requiring compatibility of the action in the sense that | |
`dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂` and | |
`dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0`. -/ | |
class has_bounded_smul : Prop := | |
( dist_smul_pair' : ∀ x : α, ∀ y₁ y₂ : β, dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ ) | |
( dist_pair_smul' : ∀ x₁ x₂ : α, ∀ y : β, dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 ) | |
variables {α β} [has_bounded_smul α β] | |
lemma dist_smul_pair (x : α) (y₁ y₂ : β) : dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ := | |
has_bounded_smul.dist_smul_pair' x y₁ y₂ | |
lemma dist_pair_smul (x₁ x₂ : α) (y : β) : dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 := | |
has_bounded_smul.dist_pair_smul' x₁ x₂ y | |
/-- The typeclass `has_bounded_smul` on a metric-space scalar action implies continuity of the | |
action. -/ | |
@[priority 100] -- see Note [lower instance priority] | |
instance has_bounded_smul.has_continuous_smul : has_continuous_smul α β := | |
{ continuous_smul := begin | |
rw metric.continuous_iff, | |
rintros ⟨a, b⟩ ε hε, | |
have : 0 ≤ dist a 0 := dist_nonneg, | |
have : 0 ≤ dist b 0 := dist_nonneg, | |
let δ : ℝ := min 1 ((dist a 0 + dist b 0 + 2)⁻¹ * ε), | |
have hδ_pos : 0 < δ, | |
{ refine lt_min_iff.mpr ⟨by norm_num, mul_pos _ hε⟩, | |
rw inv_pos, | |
linarith }, | |
refine ⟨δ, hδ_pos, _⟩, | |
rintros ⟨a', b'⟩ hab', | |
calc _ ≤ _ : dist_triangle _ (a • b') _ | |
... ≤ δ * (dist a 0 + dist b 0 + δ) : _ | |
... < ε : _, | |
{ have : 0 ≤ dist a' a := dist_nonneg, | |
have := dist_triangle b' b 0, | |
have := dist_comm (a • b') (a' • b'), | |
have := dist_comm a a', | |
have : dist a' a ≤ dist (a', b') (a, b) := le_max_left _ _, | |
have : dist b' b ≤ dist (a', b') (a, b) := le_max_right _ _, | |
have := dist_smul_pair a b' b, | |
have := dist_pair_smul a a' b', | |
nlinarith }, | |
{ have : δ ≤ _ := min_le_right _ _, | |
have : δ ≤ _ := min_le_left _ _, | |
have : (dist a 0 + dist b 0 + 2)⁻¹ * (ε * (dist a 0 + dist b 0 + δ)) < ε, | |
{ rw inv_mul_lt_iff; nlinarith }, | |
nlinarith } | |
end } | |
-- this instance could be deduced from `normed_space.has_bounded_smul`, but we prove it separately | |
-- here so that it is available earlier in the hierarchy | |
instance real.has_bounded_smul : has_bounded_smul ℝ ℝ := | |
{ dist_smul_pair' := λ x y₁ y₂, by simpa [real.dist_eq, mul_sub] using (abs_mul x (y₁ - y₂)).le, | |
dist_pair_smul' := λ x₁ x₂ y, by simpa [real.dist_eq, sub_mul] using (abs_mul (x₁ - x₂) y).le } | |
instance nnreal.has_bounded_smul : has_bounded_smul ℝ≥0 ℝ≥0 := | |
{ dist_smul_pair' := λ x y₁ y₂, by convert dist_smul_pair (x:ℝ) (y₁:ℝ) y₂ using 1, | |
dist_pair_smul' := λ x₁ x₂ y, by convert dist_pair_smul (x₁:ℝ) x₂ (y:ℝ) using 1 } | |
/-- If a scalar is central, then its right action is bounded when its left action is. -/ | |
instance has_bounded_smul.op [has_smul αᵐᵒᵖ β] [is_central_scalar α β] : | |
has_bounded_smul αᵐᵒᵖ β := | |
{ dist_smul_pair' := mul_opposite.rec $ λ x y₁ y₂, | |
by simpa only [op_smul_eq_smul] using dist_smul_pair x y₁ y₂, | |
dist_pair_smul' := mul_opposite.rec $ λ x₁, mul_opposite.rec $ λ x₂ y, | |
by simpa only [op_smul_eq_smul] using dist_pair_smul x₁ x₂ y } | |
end has_bounded_smul | |
instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_add (additive α) := | |
⟨@has_lipschitz_mul.lipschitz_mul α _ _ _⟩ | |
instance [add_monoid α] [has_lipschitz_add α] : has_lipschitz_mul (multiplicative α) := | |
⟨@has_lipschitz_add.lipschitz_add α _ _ _⟩ | |
@[to_additive] instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_mul αᵒᵈ := | |
‹has_lipschitz_mul α› | |