Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
8.33 kB
/-
Copyright (c) 2021 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import topology.algebra.mul_action
import topology.metric_space.lipschitz
/-!
# Compatibility of algebraic operations with metric space structures
In this file we define mixin typeclasses `has_lipschitz_mul`, `has_lipschitz_add`,
`has_bounded_smul` expressing compatibility of multiplication, addition and scalar-multiplication
operations with an underlying metric space structure. The intended use case is to abstract certain
properties shared by normed groups and by `R≥0`.
## Implementation notes
We deduce a `has_continuous_mul` instance from `has_lipschitz_mul`, etc. In principle there should
be an intermediate typeclass for uniform spaces, but the algebraic hierarchy there (see
`uniform_group`) is structured differently.
-/
open_locale nnreal
noncomputable theory
variables (α β : Type*) [pseudo_metric_space α] [pseudo_metric_space β]
section has_lipschitz_mul
/-- Class `has_lipschitz_add M` says that the addition `(+) : X × X → X` is Lipschitz jointly in
the two arguments. -/
class has_lipschitz_add [add_monoid β] : Prop :=
( lipschitz_add : ∃ C, lipschitz_with C (λ p : β × β, p.1 + p.2) )
/-- Class `has_lipschitz_mul M` says that the multiplication `(*) : X × X → X` is Lipschitz jointly
in the two arguments. -/
@[to_additive] class has_lipschitz_mul [monoid β] : Prop :=
( lipschitz_mul : ∃ C, lipschitz_with C (λ p : β × β, p.1 * p.2) )
variables [monoid β]
/-- The Lipschitz constant of a monoid `β` satisfying `has_lipschitz_mul` -/
@[to_additive "The Lipschitz constant of an `add_monoid` `β` satisfying `has_lipschitz_add`"]
def has_lipschitz_mul.C [_i : has_lipschitz_mul β] : ℝ≥0 :=
classical.some _i.lipschitz_mul
variables {β}
@[to_additive] lemma lipschitz_with_lipschitz_const_mul_edist [_i : has_lipschitz_mul β] :
lipschitz_with (has_lipschitz_mul.C β) (λ p : β × β, p.1 * p.2) :=
classical.some_spec _i.lipschitz_mul
variables [has_lipschitz_mul β]
@[to_additive] lemma lipschitz_with_lipschitz_const_mul :
p q : β × β, dist (p.1 * p.2) (q.1 * q.2) ≤ (has_lipschitz_mul.C β) * dist p q :=
begin
rw ← lipschitz_with_iff_dist_le_mul,
exact lipschitz_with_lipschitz_const_mul_edist,
end
@[to_additive, priority 100] -- see Note [lower instance priority]
instance has_lipschitz_mul.has_continuous_mul : has_continuous_mul β :=
⟨ lipschitz_with_lipschitz_const_mul_edist.continuous ⟩
@[to_additive] instance submonoid.has_lipschitz_mul (s : submonoid β) : has_lipschitz_mul s :=
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, begin
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
convert lipschitz_with_lipschitz_const_mul_edist ⟨(x₁:β), x₂⟩ ⟨y₁, y₂⟩ using 1
end⟩ }
@[to_additive] instance mul_opposite.has_lipschitz_mul : has_lipschitz_mul βᵐᵒᵖ :=
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, λ ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
(lipschitz_with_lipschitz_const_mul_edist ⟨x₂.unop, x₁.unop⟩ ⟨y₂.unop, y₁.unop⟩).trans_eq
(congr_arg _ $ max_comm _ _)⟩ }
-- this instance could be deduced from `normed_add_comm_group.has_lipschitz_add`, but we prove it
-- separately here so that it is available earlier in the hierarchy
instance real.has_lipschitz_add : has_lipschitz_add ℝ :=
{ lipschitz_add := ⟨2, begin
rw lipschitz_with_iff_dist_le_mul,
intros p q,
simp only [real.dist_eq, prod.dist_eq, prod.fst_sub, prod.snd_sub, nnreal.coe_one,
nnreal.coe_bit0],
convert le_trans (abs_add (p.1 - q.1) (p.2 - q.2)) _ using 2,
{ abel },
have := le_max_left (|p.1 - q.1|) (|p.2 - q.2|),
have := le_max_right (|p.1 - q.1|) (|p.2 - q.2|),
linarith,
end⟩ }
-- this instance has the same proof as `add_submonoid.has_lipschitz_add`, but the former can't
-- directly be applied here since `ℝ≥0` is a subtype of `ℝ`, not an additive submonoid.
instance nnreal.has_lipschitz_add : has_lipschitz_add ℝ≥0 :=
{ lipschitz_add := ⟨has_lipschitz_add.C ℝ, begin
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
convert lipschitz_with_lipschitz_const_add_edist ⟨(x₁:ℝ), x₂⟩ ⟨y₁, y₂⟩ using 1
end⟩ }
end has_lipschitz_mul
section has_bounded_smul
variables [has_zero α] [has_zero β] [has_smul α β]
/-- Mixin typeclass on a scalar action of a metric space `α` on a metric space `β` both with
distinguished points `0`, requiring compatibility of the action in the sense that
`dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂` and
`dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0`. -/
class has_bounded_smul : Prop :=
( dist_smul_pair' : ∀ x : α, ∀ y₁ y₂ : β, dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ )
( dist_pair_smul' : ∀ x₁ x₂ : α, ∀ y : β, dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 )
variables {α β} [has_bounded_smul α β]
lemma dist_smul_pair (x : α) (y₁ y₂ : β) : dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ :=
has_bounded_smul.dist_smul_pair' x y₁ y₂
lemma dist_pair_smul (x₁ x₂ : α) (y : β) : dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 :=
has_bounded_smul.dist_pair_smul' x₁ x₂ y
/-- The typeclass `has_bounded_smul` on a metric-space scalar action implies continuity of the
action. -/
@[priority 100] -- see Note [lower instance priority]
instance has_bounded_smul.has_continuous_smul : has_continuous_smul α β :=
{ continuous_smul := begin
rw metric.continuous_iff,
rintros ⟨a, b⟩ ε hε,
have : 0 ≤ dist a 0 := dist_nonneg,
have : 0 ≤ dist b 0 := dist_nonneg,
let δ : ℝ := min 1 ((dist a 0 + dist b 0 + 2)⁻¹ * ε),
have hδ_pos : 0 < δ,
{ refine lt_min_iff.mpr ⟨by norm_num, mul_pos _ hε⟩,
rw inv_pos,
linarith },
refine ⟨δ, hδ_pos, _⟩,
rintros ⟨a', b'⟩ hab',
calc _ ≤ _ : dist_triangle _ (a • b') _
... ≤ δ * (dist a 0 + dist b 0 + δ) : _
... < ε : _,
{ have : 0 ≤ dist a' a := dist_nonneg,
have := dist_triangle b' b 0,
have := dist_comm (a • b') (a' • b'),
have := dist_comm a a',
have : dist a' a ≤ dist (a', b') (a, b) := le_max_left _ _,
have : dist b' b ≤ dist (a', b') (a, b) := le_max_right _ _,
have := dist_smul_pair a b' b,
have := dist_pair_smul a a' b',
nlinarith },
{ have : δ ≤ _ := min_le_right _ _,
have : δ ≤ _ := min_le_left _ _,
have : (dist a 0 + dist b 0 + 2)⁻¹ * (ε * (dist a 0 + dist b 0 + δ)) < ε,
{ rw inv_mul_lt_iff; nlinarith },
nlinarith }
end }
-- this instance could be deduced from `normed_space.has_bounded_smul`, but we prove it separately
-- here so that it is available earlier in the hierarchy
instance real.has_bounded_smul : has_bounded_smul ℝ ℝ :=
{ dist_smul_pair' := λ x y₁ y₂, by simpa [real.dist_eq, mul_sub] using (abs_mul x (y₁ - y₂)).le,
dist_pair_smul' := λ x₁ x₂ y, by simpa [real.dist_eq, sub_mul] using (abs_mul (x₁ - x₂) y).le }
instance nnreal.has_bounded_smul : has_bounded_smul ℝ≥0 ℝ≥0 :=
{ dist_smul_pair' := λ x y₁ y₂, by convert dist_smul_pair (x:ℝ) (y₁:ℝ) y₂ using 1,
dist_pair_smul' := λ x₁ x₂ y, by convert dist_pair_smul (x₁:ℝ) x₂ (y:ℝ) using 1 }
/-- If a scalar is central, then its right action is bounded when its left action is. -/
instance has_bounded_smul.op [has_smul αᵐᵒᵖ β] [is_central_scalar α β] :
has_bounded_smul αᵐᵒᵖ β :=
{ dist_smul_pair' := mul_opposite.rec $ λ x y₁ y₂,
by simpa only [op_smul_eq_smul] using dist_smul_pair x y₁ y₂,
dist_pair_smul' := mul_opposite.rec $ λ x₁, mul_opposite.rec $ λ x₂ y,
by simpa only [op_smul_eq_smul] using dist_pair_smul x₁ x₂ y }
end has_bounded_smul
instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_add (additive α) :=
⟨@has_lipschitz_mul.lipschitz_mul α _ _ _⟩
instance [add_monoid α] [has_lipschitz_add α] : has_lipschitz_mul (multiplicative α) :=
⟨@has_lipschitz_add.lipschitz_add α _ _ _⟩
@[to_additive] instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_mul αᵒᵈ :=
‹has_lipschitz_mul α›