/- Copyright (c) 2021 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import topology.algebra.mul_action import topology.metric_space.lipschitz /-! # Compatibility of algebraic operations with metric space structures In this file we define mixin typeclasses `has_lipschitz_mul`, `has_lipschitz_add`, `has_bounded_smul` expressing compatibility of multiplication, addition and scalar-multiplication operations with an underlying metric space structure. The intended use case is to abstract certain properties shared by normed groups and by `R≥0`. ## Implementation notes We deduce a `has_continuous_mul` instance from `has_lipschitz_mul`, etc. In principle there should be an intermediate typeclass for uniform spaces, but the algebraic hierarchy there (see `uniform_group`) is structured differently. -/ open_locale nnreal noncomputable theory variables (α β : Type*) [pseudo_metric_space α] [pseudo_metric_space β] section has_lipschitz_mul /-- Class `has_lipschitz_add M` says that the addition `(+) : X × X → X` is Lipschitz jointly in the two arguments. -/ class has_lipschitz_add [add_monoid β] : Prop := ( lipschitz_add : ∃ C, lipschitz_with C (λ p : β × β, p.1 + p.2) ) /-- Class `has_lipschitz_mul M` says that the multiplication `(*) : X × X → X` is Lipschitz jointly in the two arguments. -/ @[to_additive] class has_lipschitz_mul [monoid β] : Prop := ( lipschitz_mul : ∃ C, lipschitz_with C (λ p : β × β, p.1 * p.2) ) variables [monoid β] /-- The Lipschitz constant of a monoid `β` satisfying `has_lipschitz_mul` -/ @[to_additive "The Lipschitz constant of an `add_monoid` `β` satisfying `has_lipschitz_add`"] def has_lipschitz_mul.C [_i : has_lipschitz_mul β] : ℝ≥0 := classical.some _i.lipschitz_mul variables {β} @[to_additive] lemma lipschitz_with_lipschitz_const_mul_edist [_i : has_lipschitz_mul β] : lipschitz_with (has_lipschitz_mul.C β) (λ p : β × β, p.1 * p.2) := classical.some_spec _i.lipschitz_mul variables [has_lipschitz_mul β] @[to_additive] lemma lipschitz_with_lipschitz_const_mul : ∀ p q : β × β, dist (p.1 * p.2) (q.1 * q.2) ≤ (has_lipschitz_mul.C β) * dist p q := begin rw ← lipschitz_with_iff_dist_le_mul, exact lipschitz_with_lipschitz_const_mul_edist, end @[to_additive, priority 100] -- see Note [lower instance priority] instance has_lipschitz_mul.has_continuous_mul : has_continuous_mul β := ⟨ lipschitz_with_lipschitz_const_mul_edist.continuous ⟩ @[to_additive] instance submonoid.has_lipschitz_mul (s : submonoid β) : has_lipschitz_mul s := { lipschitz_mul := ⟨has_lipschitz_mul.C β, begin rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, convert lipschitz_with_lipschitz_const_mul_edist ⟨(x₁:β), x₂⟩ ⟨y₁, y₂⟩ using 1 end⟩ } @[to_additive] instance mul_opposite.has_lipschitz_mul : has_lipschitz_mul βᵐᵒᵖ := { lipschitz_mul := ⟨has_lipschitz_mul.C β, λ ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, (lipschitz_with_lipschitz_const_mul_edist ⟨x₂.unop, x₁.unop⟩ ⟨y₂.unop, y₁.unop⟩).trans_eq (congr_arg _ $ max_comm _ _)⟩ } -- this instance could be deduced from `normed_add_comm_group.has_lipschitz_add`, but we prove it -- separately here so that it is available earlier in the hierarchy instance real.has_lipschitz_add : has_lipschitz_add ℝ := { lipschitz_add := ⟨2, begin rw lipschitz_with_iff_dist_le_mul, intros p q, simp only [real.dist_eq, prod.dist_eq, prod.fst_sub, prod.snd_sub, nnreal.coe_one, nnreal.coe_bit0], convert le_trans (abs_add (p.1 - q.1) (p.2 - q.2)) _ using 2, { abel }, have := le_max_left (|p.1 - q.1|) (|p.2 - q.2|), have := le_max_right (|p.1 - q.1|) (|p.2 - q.2|), linarith, end⟩ } -- this instance has the same proof as `add_submonoid.has_lipschitz_add`, but the former can't -- directly be applied here since `ℝ≥0` is a subtype of `ℝ`, not an additive submonoid. instance nnreal.has_lipschitz_add : has_lipschitz_add ℝ≥0 := { lipschitz_add := ⟨has_lipschitz_add.C ℝ, begin rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, convert lipschitz_with_lipschitz_const_add_edist ⟨(x₁:ℝ), x₂⟩ ⟨y₁, y₂⟩ using 1 end⟩ } end has_lipschitz_mul section has_bounded_smul variables [has_zero α] [has_zero β] [has_smul α β] /-- Mixin typeclass on a scalar action of a metric space `α` on a metric space `β` both with distinguished points `0`, requiring compatibility of the action in the sense that `dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂` and `dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0`. -/ class has_bounded_smul : Prop := ( dist_smul_pair' : ∀ x : α, ∀ y₁ y₂ : β, dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ ) ( dist_pair_smul' : ∀ x₁ x₂ : α, ∀ y : β, dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 ) variables {α β} [has_bounded_smul α β] lemma dist_smul_pair (x : α) (y₁ y₂ : β) : dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ := has_bounded_smul.dist_smul_pair' x y₁ y₂ lemma dist_pair_smul (x₁ x₂ : α) (y : β) : dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 := has_bounded_smul.dist_pair_smul' x₁ x₂ y /-- The typeclass `has_bounded_smul` on a metric-space scalar action implies continuity of the action. -/ @[priority 100] -- see Note [lower instance priority] instance has_bounded_smul.has_continuous_smul : has_continuous_smul α β := { continuous_smul := begin rw metric.continuous_iff, rintros ⟨a, b⟩ ε hε, have : 0 ≤ dist a 0 := dist_nonneg, have : 0 ≤ dist b 0 := dist_nonneg, let δ : ℝ := min 1 ((dist a 0 + dist b 0 + 2)⁻¹ * ε), have hδ_pos : 0 < δ, { refine lt_min_iff.mpr ⟨by norm_num, mul_pos _ hε⟩, rw inv_pos, linarith }, refine ⟨δ, hδ_pos, _⟩, rintros ⟨a', b'⟩ hab', calc _ ≤ _ : dist_triangle _ (a • b') _ ... ≤ δ * (dist a 0 + dist b 0 + δ) : _ ... < ε : _, { have : 0 ≤ dist a' a := dist_nonneg, have := dist_triangle b' b 0, have := dist_comm (a • b') (a' • b'), have := dist_comm a a', have : dist a' a ≤ dist (a', b') (a, b) := le_max_left _ _, have : dist b' b ≤ dist (a', b') (a, b) := le_max_right _ _, have := dist_smul_pair a b' b, have := dist_pair_smul a a' b', nlinarith }, { have : δ ≤ _ := min_le_right _ _, have : δ ≤ _ := min_le_left _ _, have : (dist a 0 + dist b 0 + 2)⁻¹ * (ε * (dist a 0 + dist b 0 + δ)) < ε, { rw inv_mul_lt_iff; nlinarith }, nlinarith } end } -- this instance could be deduced from `normed_space.has_bounded_smul`, but we prove it separately -- here so that it is available earlier in the hierarchy instance real.has_bounded_smul : has_bounded_smul ℝ ℝ := { dist_smul_pair' := λ x y₁ y₂, by simpa [real.dist_eq, mul_sub] using (abs_mul x (y₁ - y₂)).le, dist_pair_smul' := λ x₁ x₂ y, by simpa [real.dist_eq, sub_mul] using (abs_mul (x₁ - x₂) y).le } instance nnreal.has_bounded_smul : has_bounded_smul ℝ≥0 ℝ≥0 := { dist_smul_pair' := λ x y₁ y₂, by convert dist_smul_pair (x:ℝ) (y₁:ℝ) y₂ using 1, dist_pair_smul' := λ x₁ x₂ y, by convert dist_pair_smul (x₁:ℝ) x₂ (y:ℝ) using 1 } /-- If a scalar is central, then its right action is bounded when its left action is. -/ instance has_bounded_smul.op [has_smul αᵐᵒᵖ β] [is_central_scalar α β] : has_bounded_smul αᵐᵒᵖ β := { dist_smul_pair' := mul_opposite.rec $ λ x y₁ y₂, by simpa only [op_smul_eq_smul] using dist_smul_pair x y₁ y₂, dist_pair_smul' := mul_opposite.rec $ λ x₁, mul_opposite.rec $ λ x₂ y, by simpa only [op_smul_eq_smul] using dist_pair_smul x₁ x₂ y } end has_bounded_smul instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_add (additive α) := ⟨@has_lipschitz_mul.lipschitz_mul α _ _ _⟩ instance [add_monoid α] [has_lipschitz_add α] : has_lipschitz_mul (multiplicative α) := ⟨@has_lipschitz_add.lipschitz_add α _ _ _⟩ @[to_additive] instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_mul αᵒᵈ := ‹has_lipschitz_mul α›