Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Andrew Yang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Andrew Yang | |
-/ | |
import topology.sets.opens | |
/-! | |
# Properties of maps that are local at the target. | |
We show that the following properties of continuous maps are local at the target : | |
- `inducing` | |
- `embedding` | |
- `open_embedding` | |
- `closed_embedding` | |
-/ | |
open topological_space set filter | |
open_locale topological_space filter | |
variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β} | |
variables {s : set β} {ι : Type*} {U : ι → opens β} (hU : supr U = ⊤) | |
lemma set.restrict_preimage_inducing (s : set β) (h : inducing f) : | |
inducing (s.restrict_preimage f) := | |
begin | |
simp_rw [inducing_coe.inducing_iff, inducing_iff_nhds, restrict_preimage, maps_to.coe_restrict, | |
restrict_eq, ← @filter.comap_comap _ _ _ _ coe f] at h ⊢, | |
intros a, | |
rw [← h, ← inducing_coe.nhds_eq_comap], | |
end | |
alias set.restrict_preimage_inducing ← inducing.restrict_preimage | |
lemma set.restrict_preimage_embedding (s : set β) (h : embedding f) : | |
embedding (s.restrict_preimage f) := | |
⟨h.1.restrict_preimage s, h.2.restrict_preimage s⟩ | |
alias set.restrict_preimage_embedding ← embedding.restrict_preimage | |
lemma set.restrict_preimage_open_embedding (s : set β) (h : open_embedding f) : | |
open_embedding (s.restrict_preimage f) := | |
⟨h.1.restrict_preimage s, | |
(s.range_restrict_preimage f).symm ▸ continuous_subtype_coe.is_open_preimage _ h.2⟩ | |
alias set.restrict_preimage_open_embedding ← open_embedding.restrict_preimage | |
lemma set.restrict_preimage_closed_embedding (s : set β) (h : closed_embedding f) : | |
closed_embedding (s.restrict_preimage f) := | |
⟨h.1.restrict_preimage s, | |
(s.range_restrict_preimage f).symm ▸ inducing_coe.is_closed_preimage _ h.2⟩ | |
alias set.restrict_preimage_closed_embedding ← closed_embedding.restrict_preimage | |
include hU | |
lemma open_iff_inter_of_supr_eq_top (s : set β) : | |
is_open s ↔ ∀ i, is_open (s ∩ U i) := | |
begin | |
split, | |
{ exact λ H i, H.inter (U i).2 }, | |
{ intro H, | |
have : (⋃ i, (U i : set β)) = set.univ := by { convert (congr_arg coe hU), simp }, | |
rw [← s.inter_univ, ← this, set.inter_Union], | |
exact is_open_Union H } | |
end | |
lemma open_iff_coe_preimage_of_supr_eq_top (s : set β) : | |
is_open s ↔ ∀ i, is_open (coe ⁻¹' s : set (U i)) := | |
begin | |
simp_rw [(U _).2.open_embedding_subtype_coe.open_iff_image_open, | |
set.image_preimage_eq_inter_range, subtype.range_coe], | |
apply open_iff_inter_of_supr_eq_top, | |
assumption | |
end | |
lemma closed_iff_coe_preimage_of_supr_eq_top (s : set β) : | |
is_closed s ↔ ∀ i, is_closed (coe ⁻¹' s : set (U i)) := | |
by simpa using open_iff_coe_preimage_of_supr_eq_top hU sᶜ | |
lemma inducing_iff_inducing_of_supr_eq_top (h : continuous f) : | |
inducing f ↔ ∀ i, inducing ((U i).1.restrict_preimage f) := | |
begin | |
simp_rw [inducing_coe.inducing_iff, inducing_iff_nhds, restrict_preimage, maps_to.coe_restrict, | |
restrict_eq, ← @filter.comap_comap _ _ _ _ coe f], | |
split, | |
{ intros H i x, rw [← H, ← inducing_coe.nhds_eq_comap] }, | |
{ intros H x, | |
obtain ⟨i, hi⟩ := opens.mem_supr.mp (show f x ∈ supr U, by { rw hU, triv }), | |
erw ← open_embedding.map_nhds_eq (h.1 _ (U i).2).open_embedding_subtype_coe ⟨x, hi⟩, | |
rw [(H i) ⟨x, hi⟩, filter.subtype_coe_map_comap, function.comp_apply, subtype.coe_mk, | |
inf_eq_left, filter.le_principal_iff], | |
exact filter.preimage_mem_comap ((U i).2.mem_nhds hi) } | |
end | |
lemma embedding_iff_embedding_of_supr_eq_top (h : continuous f) : | |
embedding f ↔ ∀ i, embedding ((U i).1.restrict_preimage f) := | |
begin | |
simp_rw embedding_iff, | |
rw forall_and_distrib, | |
apply and_congr, | |
{ apply inducing_iff_inducing_of_supr_eq_top; assumption }, | |
{ apply set.injective_iff_injective_of_Union_eq_univ, convert (congr_arg coe hU), simp } | |
end | |
lemma open_embedding_iff_open_embedding_of_supr_eq_top (h : continuous f) : | |
open_embedding f ↔ ∀ i, open_embedding ((U i).1.restrict_preimage f) := | |
begin | |
simp_rw open_embedding_iff, | |
rw forall_and_distrib, | |
apply and_congr, | |
{ apply embedding_iff_embedding_of_supr_eq_top; assumption }, | |
{ simp_rw set.range_restrict_preimage, apply open_iff_coe_preimage_of_supr_eq_top hU } | |
end | |
lemma closed_embedding_iff_closed_embedding_of_supr_eq_top (h : continuous f) : | |
closed_embedding f ↔ ∀ i, closed_embedding ((U i).1.restrict_preimage f) := | |
begin | |
simp_rw closed_embedding_iff, | |
rw forall_and_distrib, | |
apply and_congr, | |
{ apply embedding_iff_embedding_of_supr_eq_top; assumption }, | |
{ simp_rw set.range_restrict_preimage, apply closed_iff_coe_preimage_of_supr_eq_top hU } | |
end | |