/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import topology.sets.opens /-! # Properties of maps that are local at the target. We show that the following properties of continuous maps are local at the target : - `inducing` - `embedding` - `open_embedding` - `closed_embedding` -/ open topological_space set filter open_locale topological_space filter variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β} variables {s : set β} {ι : Type*} {U : ι → opens β} (hU : supr U = ⊤) lemma set.restrict_preimage_inducing (s : set β) (h : inducing f) : inducing (s.restrict_preimage f) := begin simp_rw [inducing_coe.inducing_iff, inducing_iff_nhds, restrict_preimage, maps_to.coe_restrict, restrict_eq, ← @filter.comap_comap _ _ _ _ coe f] at h ⊢, intros a, rw [← h, ← inducing_coe.nhds_eq_comap], end alias set.restrict_preimage_inducing ← inducing.restrict_preimage lemma set.restrict_preimage_embedding (s : set β) (h : embedding f) : embedding (s.restrict_preimage f) := ⟨h.1.restrict_preimage s, h.2.restrict_preimage s⟩ alias set.restrict_preimage_embedding ← embedding.restrict_preimage lemma set.restrict_preimage_open_embedding (s : set β) (h : open_embedding f) : open_embedding (s.restrict_preimage f) := ⟨h.1.restrict_preimage s, (s.range_restrict_preimage f).symm ▸ continuous_subtype_coe.is_open_preimage _ h.2⟩ alias set.restrict_preimage_open_embedding ← open_embedding.restrict_preimage lemma set.restrict_preimage_closed_embedding (s : set β) (h : closed_embedding f) : closed_embedding (s.restrict_preimage f) := ⟨h.1.restrict_preimage s, (s.range_restrict_preimage f).symm ▸ inducing_coe.is_closed_preimage _ h.2⟩ alias set.restrict_preimage_closed_embedding ← closed_embedding.restrict_preimage include hU lemma open_iff_inter_of_supr_eq_top (s : set β) : is_open s ↔ ∀ i, is_open (s ∩ U i) := begin split, { exact λ H i, H.inter (U i).2 }, { intro H, have : (⋃ i, (U i : set β)) = set.univ := by { convert (congr_arg coe hU), simp }, rw [← s.inter_univ, ← this, set.inter_Union], exact is_open_Union H } end lemma open_iff_coe_preimage_of_supr_eq_top (s : set β) : is_open s ↔ ∀ i, is_open (coe ⁻¹' s : set (U i)) := begin simp_rw [(U _).2.open_embedding_subtype_coe.open_iff_image_open, set.image_preimage_eq_inter_range, subtype.range_coe], apply open_iff_inter_of_supr_eq_top, assumption end lemma closed_iff_coe_preimage_of_supr_eq_top (s : set β) : is_closed s ↔ ∀ i, is_closed (coe ⁻¹' s : set (U i)) := by simpa using open_iff_coe_preimage_of_supr_eq_top hU sᶜ lemma inducing_iff_inducing_of_supr_eq_top (h : continuous f) : inducing f ↔ ∀ i, inducing ((U i).1.restrict_preimage f) := begin simp_rw [inducing_coe.inducing_iff, inducing_iff_nhds, restrict_preimage, maps_to.coe_restrict, restrict_eq, ← @filter.comap_comap _ _ _ _ coe f], split, { intros H i x, rw [← H, ← inducing_coe.nhds_eq_comap] }, { intros H x, obtain ⟨i, hi⟩ := opens.mem_supr.mp (show f x ∈ supr U, by { rw hU, triv }), erw ← open_embedding.map_nhds_eq (h.1 _ (U i).2).open_embedding_subtype_coe ⟨x, hi⟩, rw [(H i) ⟨x, hi⟩, filter.subtype_coe_map_comap, function.comp_apply, subtype.coe_mk, inf_eq_left, filter.le_principal_iff], exact filter.preimage_mem_comap ((U i).2.mem_nhds hi) } end lemma embedding_iff_embedding_of_supr_eq_top (h : continuous f) : embedding f ↔ ∀ i, embedding ((U i).1.restrict_preimage f) := begin simp_rw embedding_iff, rw forall_and_distrib, apply and_congr, { apply inducing_iff_inducing_of_supr_eq_top; assumption }, { apply set.injective_iff_injective_of_Union_eq_univ, convert (congr_arg coe hU), simp } end lemma open_embedding_iff_open_embedding_of_supr_eq_top (h : continuous f) : open_embedding f ↔ ∀ i, open_embedding ((U i).1.restrict_preimage f) := begin simp_rw open_embedding_iff, rw forall_and_distrib, apply and_congr, { apply embedding_iff_embedding_of_supr_eq_top; assumption }, { simp_rw set.range_restrict_preimage, apply open_iff_coe_preimage_of_supr_eq_top hU } end lemma closed_embedding_iff_closed_embedding_of_supr_eq_top (h : continuous f) : closed_embedding f ↔ ∀ i, closed_embedding ((U i).1.restrict_preimage f) := begin simp_rw closed_embedding_iff, rw forall_and_distrib, apply and_congr, { apply embedding_iff_embedding_of_supr_eq_top; assumption }, { simp_rw set.range_restrict_preimage, apply closed_iff_coe_preimage_of_supr_eq_top hU } end