Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad | |
-/ | |
import order.filter.ultrafilter | |
import order.filter.partial | |
import order.filter.small_sets | |
import algebra.support | |
/-! | |
# Basic theory of topological spaces. | |
The main definition is the type class `topological space α` which endows a type `α` with a topology. | |
Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and | |
`frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. A filter `F` on `α` has | |
`x` as a cluster point if `cluster_pt x F : 𝓝 x ⊓ F ≠ ⊥`. A map `f : ι → α` clusters at `x` | |
along `F : filter ι` if `map_cluster_pt x F f : cluster_pt x (map f F)`. In particular | |
the notion of cluster point of a sequence `u` is `map_cluster_pt x at_top u`. | |
For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`, | |
`continuous_at f a` means `f` is continuous at `a`, and global continuity is | |
`continuous f`. There is also a version of continuity `pcontinuous` for | |
partially defined functions. | |
## Notation | |
* `𝓝 x`: the filter `nhds x` of neighborhoods of a point `x`; | |
* `𝓟 s`: the principal filter of a set `s`; | |
* `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`; | |
* `𝓝[≤] x`: the filter `nhds_within x (set.Iic x)` of left-neighborhoods of `x`; | |
* `𝓝[≥] x`: the filter `nhds_within x (set.Ici x)` of right-neighborhoods of `x`; | |
* `𝓝[<] x`: the filter `nhds_within x (set.Iio x)` of punctured left-neighborhoods of `x`; | |
* `𝓝[>] x`: the filter `nhds_within x (set.Ioi x)` of punctured right-neighborhoods of `x`; | |
* `𝓝[≠] x`: the filter `nhds_within x {x}ᶜ` of punctured neighborhoods of `x`. | |
## Implementation notes | |
Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in | |
<https://leanprover-community.github.io/theories/topology.html>. | |
## References | |
* [N. Bourbaki, *General Topology*][bourbaki1966] | |
* [I. M. James, *Topologies and Uniformities*][james1999] | |
## Tags | |
topological space, interior, closure, frontier, neighborhood, continuity, continuous function | |
-/ | |
noncomputable theory | |
open set filter classical | |
open_locale classical filter | |
universes u v w | |
/-! | |
### Topological spaces | |
-/ | |
/-- A topology on `α`. -/ | |
@[protect_proj] structure topological_space (α : Type u) := | |
(is_open : set α → Prop) | |
(is_open_univ : is_open univ) | |
(is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t)) | |
(is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s)) | |
attribute [class] topological_space | |
/-- A constructor for topologies by specifying the closed sets, | |
and showing that they satisfy the appropriate conditions. -/ | |
def topological_space.of_closed {α : Type u} (T : set (set α)) | |
(empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) : | |
topological_space α := | |
{ is_open := λ X, Xᶜ ∈ T, | |
is_open_univ := by simp [empty_mem], | |
is_open_inter := λ s t hs ht, by simpa only [compl_inter] using union_mem sᶜ hs tᶜ ht, | |
is_open_sUnion := λ s hs, | |
by rw set.compl_sUnion; exact sInter_mem (compl '' s) | |
(λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) } | |
section topological_space | |
variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ t : set α} {p p₁ p₂ : α → Prop} | |
@[ext] | |
lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g | |
| ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl | |
section | |
variables [topological_space α] | |
/-- `is_open s` means that `s` is open in the ambient topological space on `α` -/ | |
def is_open (s : set α) : Prop := topological_space.is_open ‹_› s | |
@[simp] | |
lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ _ | |
lemma is_open.inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) := | |
topological_space.is_open_inter _ s₁ s₂ h₁ h₂ | |
lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) := | |
topological_space.is_open_sUnion _ s h | |
end | |
lemma topological_space_eq_iff {t t' : topological_space α} : | |
t = t' ↔ ∀ s, @is_open α t s ↔ @is_open α t' s := | |
⟨λ h s, h ▸ iff.rfl, λ h, by { ext, exact h _ }⟩ | |
lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s := | |
rfl | |
variables [topological_space α] | |
lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) := | |
is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i | |
lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) : | |
is_open (⋃i∈s, f i) := | |
is_open_Union $ assume i, is_open_Union $ assume hi, h i hi | |
lemma is_open.union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) := | |
by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩) | |
@[simp] lemma is_open_empty : is_open (∅ : set α) := | |
by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim) | |
lemma is_open_sInter {s : set (set α)} (hs : s.finite) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) := | |
finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $ | |
λ a s has hs ih h, by rw sInter_insert; exact | |
is_open.inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _) | |
lemma is_open_bInter {s : set β} {f : β → set α} (hs : s.finite) : | |
(∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) := | |
finite.induction_on hs | |
(λ _, by rw bInter_empty; exact is_open_univ) | |
(λ a s has hs ih h, by rw bInter_insert; exact | |
is_open.inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) | |
lemma is_open_Inter [finite β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) := | |
suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa, | |
is_open_bInter finite_univ (λ i _, h i) | |
lemma is_open_Inter_prop {p : Prop} {s : p → set α} | |
(h : ∀ h : p, is_open (s h)) : is_open (Inter s) := | |
by by_cases p; simp * | |
lemma is_open_const {p : Prop} : is_open {a : α | p} := | |
by_cases | |
(assume : p, begin simp only [this]; exact is_open_univ end) | |
(assume : ¬ p, begin simp only [this]; exact is_open_empty end) | |
lemma is_open.and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} := | |
is_open.inter | |
/-- A set is closed if its complement is open -/ | |
class is_closed (s : set α) : Prop := | |
(is_open_compl : is_open sᶜ) | |
@[simp] lemma is_open_compl_iff {s : set α} : is_open sᶜ ↔ is_closed s := | |
⟨λ h, ⟨h⟩, λ h, h.is_open_compl⟩ | |
@[simp] lemma is_closed_empty : is_closed (∅ : set α) := | |
by { rw [← is_open_compl_iff, compl_empty], exact is_open_univ } | |
@[simp] lemma is_closed_univ : is_closed (univ : set α) := | |
by { rw [← is_open_compl_iff, compl_univ], exact is_open_empty } | |
lemma is_closed.union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) := | |
λ h₁ h₂, by { rw [← is_open_compl_iff] at *, rw compl_union, exact is_open.inter h₁ h₂ } | |
lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) := | |
by simpa only [← is_open_compl_iff, compl_sInter, sUnion_image] using is_open_bUnion | |
lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) := | |
is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i | |
lemma is_closed_bInter {s : set β} {f : β → set α} (h : ∀ i ∈ s, is_closed (f i)) : | |
is_closed (⋂ i ∈ s, f i) := | |
is_closed_Inter $ λ i, is_closed_Inter $ h i | |
@[simp] lemma is_closed_compl_iff {s : set α} : is_closed sᶜ ↔ is_open s := | |
by rw [←is_open_compl_iff, compl_compl] | |
lemma is_open.is_closed_compl {s : set α} (hs : is_open s) : is_closed sᶜ := | |
is_closed_compl_iff.2 hs | |
lemma is_open.sdiff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) := | |
is_open.inter h₁ $ is_open_compl_iff.mpr h₂ | |
lemma is_closed.inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) := | |
by { rw [← is_open_compl_iff] at *, rw compl_inter, exact is_open.union h₁ h₂ } | |
lemma is_closed.sdiff {s t : set α} (h₁ : is_closed s) (h₂ : is_open t) : is_closed (s \ t) := | |
is_closed.inter h₁ (is_closed_compl_iff.mpr h₂) | |
lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : s.finite) : | |
(∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) := | |
finite.induction_on hs | |
(λ _, by rw bUnion_empty; exact is_closed_empty) | |
(λ a s has hs ih h, by rw bUnion_insert; exact | |
is_closed.union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) | |
lemma is_closed_Union [finite β] {s : β → set α} (h : ∀ i, is_closed (s i)) : | |
is_closed (⋃ i, s i) := | |
suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i), | |
by convert this; simp [set.ext_iff], | |
is_closed_bUnion finite_univ (λ i _, h i) | |
lemma is_closed_Union_prop {p : Prop} {s : p → set α} | |
(h : ∀ h : p, is_closed (s h)) : is_closed (Union s) := | |
by by_cases p; simp * | |
lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x}) | |
(hq : is_closed {x | q x}) : is_closed {x | p x → q x} := | |
have {x | p x → q x} = {x | p x}ᶜ ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or, | |
by rw [this]; exact is_closed.union (is_closed_compl_iff.mpr hp) hq | |
lemma is_closed.not : is_closed {a | p a} → is_open {a | ¬ p a} := | |
is_open_compl_iff.mpr | |
/-! | |
### Interior of a set | |
-/ | |
/-- The interior of a set `s` is the largest open subset of `s`. -/ | |
def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s} | |
lemma mem_interior {s : set α} {x : α} : | |
x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t := | |
by simp only [interior, mem_sUnion, mem_set_of_eq, exists_prop, and_assoc, and.left_comm] | |
@[simp] lemma is_open_interior {s : set α} : is_open (interior s) := | |
is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁ | |
lemma interior_subset {s : set α} : interior s ⊆ s := | |
sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂ | |
lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s := | |
subset_sUnion_of_mem ⟨h₂, h₁⟩ | |
lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s := | |
subset.antisymm interior_subset (interior_maximal (subset.refl s) h) | |
lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s := | |
⟨assume h, h ▸ is_open_interior, is_open.interior_eq⟩ | |
lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s := | |
by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and] | |
lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) : | |
s ⊆ interior t ↔ s ⊆ t := | |
⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩ | |
lemma subset_interior_iff {s t : set α} : t ⊆ interior s ↔ ∃ U, is_open U ∧ t ⊆ U ∧ U ⊆ s := | |
⟨λ h, ⟨interior s, is_open_interior, h, interior_subset⟩, | |
λ ⟨U, hU, htU, hUs⟩, htU.trans (interior_maximal hUs hU)⟩ | |
@[mono] lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t := | |
interior_maximal (subset.trans interior_subset h) is_open_interior | |
@[simp] lemma interior_empty : interior (∅ : set α) = ∅ := | |
is_open_empty.interior_eq | |
@[simp] lemma interior_univ : interior (univ : set α) = univ := | |
is_open_univ.interior_eq | |
@[simp] lemma interior_eq_univ {s : set α} : interior s = univ ↔ s = univ := | |
⟨λ h, univ_subset_iff.mp $ h.symm.trans_le interior_subset, λ h, h.symm ▸ interior_univ⟩ | |
@[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s := | |
is_open_interior.interior_eq | |
@[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t := | |
subset.antisymm | |
(subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t)) | |
(interior_maximal (inter_subset_inter interior_subset interior_subset) $ | |
is_open.inter is_open_interior is_open_interior) | |
@[simp] lemma finset.interior_Inter {ι : Type*} (s : finset ι) (f : ι → set α) : | |
interior (⋂ i ∈ s, f i) = ⋂ i ∈ s, interior (f i) := | |
begin | |
classical, | |
refine s.induction_on (by simp) _, | |
intros i s h₁ h₂, | |
simp [h₂], | |
end | |
@[simp] lemma interior_Inter {ι : Type*} [finite ι] (f : ι → set α) : | |
interior (⋂ i, f i) = ⋂ i, interior (f i) := | |
by { casesI nonempty_fintype ι, convert finset.univ.interior_Inter f; simp } | |
lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) | |
(h₂ : interior t = ∅) : | |
interior (s ∪ t) = interior s := | |
have interior (s ∪ t) ⊆ s, from | |
assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩, | |
classical.by_contradiction $ assume hx₂ : x ∉ s, | |
have u \ s ⊆ t, | |
from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂, | |
have u \ s ⊆ interior t, | |
by rwa subset_interior_iff_subset_of_open (is_open.sdiff hu₁ h₁), | |
have u \ s ⊆ ∅, | |
by rwa h₂ at this, | |
this ⟨hx₁, hx₂⟩, | |
subset.antisymm | |
(interior_maximal this is_open_interior) | |
(interior_mono $ subset_union_left _ _) | |
lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t := | |
by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior] | |
lemma interior_Inter_subset (s : ι → set α) : interior (⋂ i, s i) ⊆ ⋂ i, interior (s i) := | |
subset_Inter $ λ i, interior_mono $ Inter_subset _ _ | |
lemma interior_Inter₂_subset (p : ι → Sort*) (s : Π i, p i → set α) : | |
interior (⋂ i j, s i j) ⊆ ⋂ i j, interior (s i j) := | |
(interior_Inter_subset _).trans $ Inter_mono $ λ i, interior_Inter_subset _ | |
lemma interior_sInter_subset (S : set (set α)) : interior (⋂₀ S) ⊆ ⋂ s ∈ S, interior s := | |
calc interior (⋂₀ S) = interior (⋂ s ∈ S, s) : by rw sInter_eq_bInter | |
... ⊆ ⋂ s ∈ S, interior s : interior_Inter₂_subset _ _ | |
/-! | |
### Closure of a set | |
-/ | |
/-- The closure of `s` is the smallest closed set containing `s`. -/ | |
def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t} | |
@[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) := | |
is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁ | |
lemma subset_closure {s : set α} : s ⊆ closure s := | |
subset_sInter $ assume t ⟨h₁, h₂⟩, h₂ | |
lemma not_mem_of_not_mem_closure {s : set α} {P : α} (hP : P ∉ closure s) : P ∉ s := | |
λ h, hP (subset_closure h) | |
lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t := | |
sInter_subset_of_mem ⟨h₂, h₁⟩ | |
lemma disjoint.closure_left {s t : set α} (hd : disjoint s t) (ht : is_open t) : | |
disjoint (closure s) t := | |
disjoint_compl_left.mono_left $ closure_minimal hd.subset_compl_right ht.is_closed_compl | |
lemma disjoint.closure_right {s t : set α} (hd : disjoint s t) (hs : is_open s) : | |
disjoint s (closure t) := | |
(hd.symm.closure_left hs).symm | |
lemma is_closed.closure_eq {s : set α} (h : is_closed s) : closure s = s := | |
subset.antisymm (closure_minimal (subset.refl s) h) subset_closure | |
lemma is_closed.closure_subset {s : set α} (hs : is_closed s) : closure s ⊆ s := | |
closure_minimal (subset.refl _) hs | |
lemma is_closed.closure_subset_iff {s t : set α} (h₁ : is_closed t) : | |
closure s ⊆ t ↔ s ⊆ t := | |
⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩ | |
lemma is_closed.mem_iff_closure_subset {α : Type*} [topological_space α] {U : set α} | |
(hU : is_closed U) {x : α} : x ∈ U ↔ closure ({x} : set α) ⊆ U := | |
(hU.closure_subset_iff.trans set.singleton_subset_iff).symm | |
@[mono] lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t := | |
closure_minimal (subset.trans h subset_closure) is_closed_closure | |
lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) := | |
λ _ _, closure_mono | |
lemma diff_subset_closure_iff {s t : set α} : | |
s \ t ⊆ closure t ↔ s ⊆ closure t := | |
by rw [diff_subset_iff, union_eq_self_of_subset_left subset_closure] | |
lemma closure_inter_subset_inter_closure (s t : set α) : | |
closure (s ∩ t) ⊆ closure s ∩ closure t := | |
(monotone_closure α).map_inf_le s t | |
lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s := | |
by rw subset.antisymm subset_closure h; exact is_closed_closure | |
lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s := | |
⟨assume h, h ▸ is_closed_closure, is_closed.closure_eq⟩ | |
lemma closure_subset_iff_is_closed {s : set α} : closure s ⊆ s ↔ is_closed s := | |
⟨is_closed_of_closure_subset, is_closed.closure_subset⟩ | |
@[simp] lemma closure_empty : closure (∅ : set α) = ∅ := | |
is_closed_empty.closure_eq | |
@[simp] lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ := | |
⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩ | |
@[simp] lemma closure_nonempty_iff {s : set α} : (closure s).nonempty ↔ s.nonempty := | |
by simp only [← ne_empty_iff_nonempty, ne.def, closure_empty_iff] | |
alias closure_nonempty_iff ↔ set.nonempty.of_closure set.nonempty.closure | |
@[simp] lemma closure_univ : closure (univ : set α) = univ := | |
is_closed_univ.closure_eq | |
@[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s := | |
is_closed_closure.closure_eq | |
@[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t := | |
subset.antisymm | |
(closure_minimal (union_subset_union subset_closure subset_closure) $ | |
is_closed.union is_closed_closure is_closed_closure) | |
((monotone_closure α).le_map_sup s t) | |
@[simp] lemma finset.closure_bUnion {ι : Type*} (s : finset ι) (f : ι → set α) : | |
closure (⋃ i ∈ s, f i) = ⋃ i ∈ s, closure (f i) := | |
begin | |
classical, | |
refine s.induction_on (by simp) _, | |
intros i s h₁ h₂, | |
simp [h₂], | |
end | |
@[simp] lemma closure_Union {ι : Type*} [finite ι] (f : ι → set α) : | |
closure (⋃ i, f i) = ⋃ i, closure (f i) := | |
by { casesI nonempty_fintype ι, convert finset.univ.closure_bUnion f; simp } | |
lemma interior_subset_closure {s : set α} : interior s ⊆ closure s := | |
subset.trans interior_subset subset_closure | |
lemma closure_eq_compl_interior_compl {s : set α} : closure s = (interior sᶜ)ᶜ := | |
begin | |
rw [interior, closure, compl_sUnion, compl_image_set_of], | |
simp only [compl_subset_compl, is_open_compl_iff], | |
end | |
@[simp] lemma interior_compl {s : set α} : interior sᶜ = (closure s)ᶜ := | |
by simp [closure_eq_compl_interior_compl] | |
@[simp] lemma closure_compl {s : set α} : closure sᶜ = (interior s)ᶜ := | |
by simp [closure_eq_compl_interior_compl] | |
theorem mem_closure_iff {s : set α} {a : α} : | |
a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty := | |
⟨λ h o oo ao, classical.by_contradiction $ λ os, | |
have s ⊆ oᶜ, from λ x xs xo, os ⟨x, xo, xs⟩, | |
closure_minimal this (is_closed_compl_iff.2 oo) h ao, | |
λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc, | |
let ⟨x, hc, hs⟩ := (H _ h₁.is_open_compl nc) in hc (h₂ hs)⟩ | |
lemma filter.le_lift'_closure (l : filter α) : l ≤ l.lift' closure := | |
le_infi₂ $ λ s hs, le_principal_iff.2 $ mem_of_superset hs subset_closure | |
lemma filter.has_basis.lift'_closure {l : filter α} {p : ι → Prop} {s : ι → set α} | |
(h : l.has_basis p s) : | |
(l.lift' closure).has_basis p (λ i, closure (s i)) := | |
h.lift' (monotone_closure α) | |
lemma filter.has_basis.lift'_closure_eq_self {l : filter α} {p : ι → Prop} {s : ι → set α} | |
(h : l.has_basis p s) (hc : ∀ i, p i → is_closed (s i)) : | |
l.lift' closure = l := | |
le_antisymm (h.ge_iff.2 $ λ i hi, (hc i hi).closure_eq ▸ mem_lift' (h.mem_of_mem hi)) | |
l.le_lift'_closure | |
/-- A set is dense in a topological space if every point belongs to its closure. -/ | |
def dense (s : set α) : Prop := ∀ x, x ∈ closure s | |
lemma dense_iff_closure_eq {s : set α} : dense s ↔ closure s = univ := | |
eq_univ_iff_forall.symm | |
lemma dense.closure_eq {s : set α} (h : dense s) : closure s = univ := | |
dense_iff_closure_eq.mp h | |
lemma interior_eq_empty_iff_dense_compl {s : set α} : interior s = ∅ ↔ dense sᶜ := | |
by rw [dense_iff_closure_eq, closure_compl, compl_univ_iff] | |
lemma dense.interior_compl {s : set α} (h : dense s) : interior sᶜ = ∅ := | |
interior_eq_empty_iff_dense_compl.2 $ by rwa compl_compl | |
/-- The closure of a set `s` is dense if and only if `s` is dense. -/ | |
@[simp] lemma dense_closure {s : set α} : dense (closure s) ↔ dense s := | |
by rw [dense, dense, closure_closure] | |
alias dense_closure ↔ dense.of_closure dense.closure | |
@[simp] lemma dense_univ : dense (univ : set α) := λ x, subset_closure trivial | |
/-- A set is dense if and only if it has a nonempty intersection with each nonempty open set. -/ | |
lemma dense_iff_inter_open {s : set α} : | |
dense s ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty := | |
begin | |
split ; intro h, | |
{ rintros U U_op ⟨x, x_in⟩, | |
exact mem_closure_iff.1 (by simp only [h.closure_eq]) U U_op x_in }, | |
{ intro x, | |
rw mem_closure_iff, | |
intros U U_op x_in, | |
exact h U U_op ⟨_, x_in⟩ }, | |
end | |
alias dense_iff_inter_open ↔ dense.inter_open_nonempty _ | |
lemma dense.exists_mem_open {s : set α} (hs : dense s) {U : set α} (ho : is_open U) | |
(hne : U.nonempty) : | |
∃ x ∈ s, x ∈ U := | |
let ⟨x, hx⟩ := hs.inter_open_nonempty U ho hne in ⟨x, hx.2, hx.1⟩ | |
lemma dense.nonempty_iff {s : set α} (hs : dense s) : | |
s.nonempty ↔ nonempty α := | |
⟨λ ⟨x, hx⟩, ⟨x⟩, λ ⟨x⟩, | |
let ⟨y, hy⟩ := hs.inter_open_nonempty _ is_open_univ ⟨x, trivial⟩ in ⟨y, hy.2⟩⟩ | |
lemma dense.nonempty [h : nonempty α] {s : set α} (hs : dense s) : s.nonempty := | |
hs.nonempty_iff.2 h | |
@[mono] | |
lemma dense.mono {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : dense s₁) : dense s₂ := | |
λ x, closure_mono h (hd x) | |
/-- Complement to a singleton is dense if and only if the singleton is not an open set. -/ | |
lemma dense_compl_singleton_iff_not_open {x : α} : dense ({x}ᶜ : set α) ↔ ¬is_open ({x} : set α) := | |
begin | |
fsplit, | |
{ intros hd ho, | |
exact (hd.inter_open_nonempty _ ho (singleton_nonempty _)).ne_empty (inter_compl_self _) }, | |
{ refine λ ho, dense_iff_inter_open.2 (λ U hU hne, inter_compl_nonempty_iff.2 $ λ hUx, _), | |
obtain rfl : U = {x}, from eq_singleton_iff_nonempty_unique_mem.2 ⟨hne, hUx⟩, | |
exact ho hU } | |
end | |
/-! | |
### Frontier of a set | |
-/ | |
/-- The frontier of a set is the set of points between the closure and interior. -/ | |
def frontier (s : set α) : set α := closure s \ interior s | |
@[simp] lemma closure_diff_interior (s : set α) : closure s \ interior s = frontier s := rfl | |
@[simp] lemma closure_diff_frontier (s : set α) : closure s \ frontier s = interior s := | |
by rw [frontier, diff_diff_right_self, inter_eq_self_of_subset_right interior_subset_closure] | |
@[simp] lemma self_diff_frontier (s : set α) : s \ frontier s = interior s := | |
by rw [frontier, diff_diff_right, diff_eq_empty.2 subset_closure, | |
inter_eq_self_of_subset_right interior_subset, empty_union] | |
lemma frontier_eq_closure_inter_closure {s : set α} : | |
frontier s = closure s ∩ closure sᶜ := | |
by rw [closure_compl, frontier, diff_eq] | |
lemma frontier_subset_closure {s : set α} : frontier s ⊆ closure s := diff_subset _ _ | |
lemma is_closed.frontier_subset (hs : is_closed s) : frontier s ⊆ s := | |
frontier_subset_closure.trans hs.closure_eq.subset | |
lemma frontier_closure_subset {s : set α} : frontier (closure s) ⊆ frontier s := | |
diff_subset_diff closure_closure.subset $ interior_mono subset_closure | |
lemma frontier_interior_subset {s : set α} : frontier (interior s) ⊆ frontier s := | |
diff_subset_diff (closure_mono interior_subset) interior_interior.symm.subset | |
/-- The complement of a set has the same frontier as the original set. -/ | |
@[simp] lemma frontier_compl (s : set α) : frontier sᶜ = frontier s := | |
by simp only [frontier_eq_closure_inter_closure, compl_compl, inter_comm] | |
@[simp] lemma frontier_univ : frontier (univ : set α) = ∅ := by simp [frontier] | |
@[simp] lemma frontier_empty : frontier (∅ : set α) = ∅ := by simp [frontier] | |
lemma frontier_inter_subset (s t : set α) : | |
frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) := | |
begin | |
simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union], | |
convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t), | |
simp only [inter_distrib_left, inter_distrib_right, inter_assoc], | |
congr' 2, | |
apply inter_comm | |
end | |
lemma frontier_union_subset (s t : set α) : | |
frontier (s ∪ t) ⊆ (frontier s ∩ closure tᶜ) ∪ (closure sᶜ ∩ frontier t) := | |
by simpa only [frontier_compl, ← compl_union] | |
using frontier_inter_subset sᶜ tᶜ | |
lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s := | |
by rw [frontier, hs.closure_eq] | |
lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s := | |
by rw [frontier, hs.interior_eq] | |
lemma is_open.inter_frontier_eq {s : set α} (hs : is_open s) : s ∩ frontier s = ∅ := | |
by rw [hs.frontier_eq, inter_diff_self] | |
/-- The frontier of a set is closed. -/ | |
lemma is_closed_frontier {s : set α} : is_closed (frontier s) := | |
by rw frontier_eq_closure_inter_closure; exact is_closed.inter is_closed_closure is_closed_closure | |
/-- The frontier of a closed set has no interior point. -/ | |
lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ := | |
begin | |
have A : frontier s = s \ interior s, from h.frontier_eq, | |
have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _), | |
have C : interior (frontier s) ⊆ frontier s := interior_subset, | |
have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) := | |
subset_inter B (by simpa [A] using C), | |
rwa [inter_diff_self, subset_empty_iff] at this, | |
end | |
lemma closure_eq_interior_union_frontier (s : set α) : closure s = interior s ∪ frontier s := | |
(union_diff_cancel interior_subset_closure).symm | |
lemma closure_eq_self_union_frontier (s : set α) : closure s = s ∪ frontier s := | |
(union_diff_cancel' interior_subset subset_closure).symm | |
lemma disjoint.frontier_left (ht : is_open t) (hd : disjoint s t) : disjoint (frontier s) t := | |
subset_compl_iff_disjoint_right.1 $ frontier_subset_closure.trans $ closure_minimal | |
(disjoint_left.1 hd) $ is_closed_compl_iff.2 ht | |
lemma disjoint.frontier_right (hs : is_open s) (hd : disjoint s t) : disjoint s (frontier t) := | |
(hd.symm.frontier_left hs).symm | |
lemma frontier_eq_inter_compl_interior {s : set α} : | |
frontier s = (interior s)ᶜ ∩ (interior (sᶜ))ᶜ := | |
by { rw [←frontier_compl, ←closure_compl], refl } | |
lemma compl_frontier_eq_union_interior {s : set α} : | |
(frontier s)ᶜ = interior s ∪ interior sᶜ := | |
begin | |
rw frontier_eq_inter_compl_interior, | |
simp only [compl_inter, compl_compl], | |
end | |
/-! | |
### Neighborhoods | |
-/ | |
/-- A set is called a neighborhood of `a` if it contains an open set around `a`. The set of all | |
neighborhoods of `a` forms a filter, the neighborhood filter at `a`, is here defined as the | |
infimum over the principal filters of all open sets containing `a`. -/ | |
@[irreducible] def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) | |
localized "notation `𝓝` := nhds" in topological_space | |
/-- The "neighborhood within" filter. Elements of `𝓝[s] a` are sets containing the | |
intersection of `s` and a neighborhood of `a`. -/ | |
def nhds_within (a : α) (s : set α) : filter α := 𝓝 a ⊓ 𝓟 s | |
localized "notation `𝓝[` s `] ` x:100 := nhds_within x s" in topological_space | |
localized "notation `𝓝[≠] ` x:100 := nhds_within x {x}ᶜ" in topological_space | |
localized "notation `𝓝[≥] ` x:100 := nhds_within x (set.Ici x)" in topological_space | |
localized "notation `𝓝[≤] ` x:100 := nhds_within x (set.Iic x)" in topological_space | |
localized "notation `𝓝[>] ` x:100 := nhds_within x (set.Ioi x)" in topological_space | |
localized "notation `𝓝[<] ` x:100 := nhds_within x (set.Iio x)" in topological_space | |
lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) := by rw nhds | |
lemma nhds_def' (a : α) : 𝓝 a = ⨅ (s : set α) (hs : is_open s) (ha : a ∈ s), 𝓟 s := | |
by simp only [nhds_def, mem_set_of_eq, and_comm (a ∈ _), infi_and] | |
/-- The open sets containing `a` are a basis for the neighborhood filter. See `nhds_basis_opens'` | |
for a variant using open neighborhoods instead. -/ | |
lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) (λ s, s) := | |
begin | |
rw nhds_def, | |
exact has_basis_binfi_principal | |
(λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open.inter hs ht⟩, | |
⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩) | |
⟨univ, ⟨mem_univ a, is_open_univ⟩⟩ | |
end | |
lemma nhds_basis_closeds (a : α) : (𝓝 a).has_basis (λ s : set α, a ∉ s ∧ is_closed s) compl := | |
⟨λ t, (nhds_basis_opens a).mem_iff.trans $ compl_surjective.exists.trans $ | |
by simp only [is_open_compl_iff, mem_compl_iff]⟩ | |
/-- A filter lies below the neighborhood filter at `a` iff it contains every open set around `a`. -/ | |
lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f := | |
by simp [nhds_def] | |
/-- To show a filter is above the neighborhood filter at `a`, it suffices to show that it is above | |
the principal filter of some open set `s` containing `a`. -/ | |
lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : 𝓟 s ≤ f) : 𝓝 a ≤ f := | |
by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf) | |
lemma mem_nhds_iff {a : α} {s : set α} : | |
s ∈ 𝓝 a ↔ ∃ t ⊆ s, is_open t ∧ a ∈ t := | |
(nhds_basis_opens a).mem_iff.trans | |
⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩ | |
/-- A predicate is true in a neighborhood of `a` iff it is true for all the points in an open set | |
containing `a`. -/ | |
lemma eventually_nhds_iff {a : α} {p : α → Prop} : | |
(∀ᶠ x in 𝓝 a, p x) ↔ ∃ (t : set α), (∀ x ∈ t, p x) ∧ is_open t ∧ a ∈ t := | |
mem_nhds_iff.trans $ by simp only [subset_def, exists_prop, mem_set_of_eq] | |
lemma map_nhds {a : α} {f : α → β} : | |
map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 (image f s)) := | |
((nhds_basis_opens a).map f).eq_binfi | |
lemma mem_of_mem_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s := | |
λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_iff.1 H in ht hs | |
/-- If a predicate is true in a neighborhood of `a`, then it is true for `a`. -/ | |
lemma filter.eventually.self_of_nhds {p : α → Prop} {a : α} | |
(h : ∀ᶠ y in 𝓝 a, p y) : p a := | |
mem_of_mem_nhds h | |
lemma is_open.mem_nhds {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : | |
s ∈ 𝓝 a := | |
mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩ | |
lemma is_open.mem_nhds_iff {a : α} {s : set α} (hs : is_open s) : s ∈ 𝓝 a ↔ a ∈ s := | |
⟨mem_of_mem_nhds, λ ha, mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩⟩ | |
lemma is_closed.compl_mem_nhds {a : α} {s : set α} (hs : is_closed s) (ha : a ∉ s) : sᶜ ∈ 𝓝 a := | |
hs.is_open_compl.mem_nhds (mem_compl ha) | |
lemma is_open.eventually_mem {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : | |
∀ᶠ x in 𝓝 a, x ∈ s := | |
is_open.mem_nhds hs ha | |
/-- The open neighborhoods of `a` are a basis for the neighborhood filter. See `nhds_basis_opens` | |
for a variant using open sets around `a` instead. -/ | |
lemma nhds_basis_opens' (a : α) : (𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_open s) (λ x, x) := | |
begin | |
convert nhds_basis_opens a, | |
ext s, | |
exact and.congr_left_iff.2 is_open.mem_nhds_iff | |
end | |
/-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of `s`: | |
it contains an open set containing `s`. -/ | |
lemma exists_open_set_nhds {s U : set α} (h : ∀ x ∈ s, U ∈ 𝓝 x) : | |
∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := | |
begin | |
have := λ x hx, (nhds_basis_opens x).mem_iff.1 (h x hx), | |
choose! Z hZ hZU using this, choose hZmem hZo using hZ, | |
exact ⟨⋃ x ∈ s, Z x, λ x hx, mem_bUnion hx (hZmem x hx), is_open_bUnion hZo, Union₂_subset hZU⟩ | |
end | |
/-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of s: | |
it contains an open set containing `s`. -/ | |
lemma exists_open_set_nhds' {s U : set α} (h : U ∈ ⨆ x ∈ s, 𝓝 x) : | |
∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := | |
exists_open_set_nhds (by simpa using h) | |
/-- If a predicate is true in a neighbourhood of `a`, then for `y` sufficiently close | |
to `a` this predicate is true in a neighbourhood of `y`. -/ | |
lemma filter.eventually.eventually_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : | |
∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x := | |
let ⟨t, htp, hto, ha⟩ := eventually_nhds_iff.1 h in | |
eventually_nhds_iff.2 ⟨t, λ x hx, eventually_nhds_iff.2 ⟨t, htp, hto, hx⟩, hto, ha⟩ | |
@[simp] lemma eventually_eventually_nhds {p : α → Prop} {a : α} : | |
(∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝 a, p x := | |
⟨λ h, h.self_of_nhds, λ h, h.eventually_nhds⟩ | |
@[simp] lemma eventually_mem_nhds {s : set α} {a : α} : | |
(∀ᶠ x in 𝓝 a, s ∈ 𝓝 x) ↔ s ∈ 𝓝 a := | |
eventually_eventually_nhds | |
@[simp] lemma nhds_bind_nhds : (𝓝 a).bind 𝓝 = 𝓝 a := filter.ext $ λ s, eventually_eventually_nhds | |
@[simp] lemma eventually_eventually_eq_nhds {f g : α → β} {a : α} : | |
(∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g) ↔ f =ᶠ[𝓝 a] g := | |
eventually_eventually_nhds | |
lemma filter.eventually_eq.eq_of_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : f a = g a := | |
h.self_of_nhds | |
@[simp] lemma eventually_eventually_le_nhds [has_le β] {f g : α → β} {a : α} : | |
(∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g) ↔ f ≤ᶠ[𝓝 a] g := | |
eventually_eventually_nhds | |
/-- If two functions are equal in a neighbourhood of `a`, then for `y` sufficiently close | |
to `a` these functions are equal in a neighbourhood of `y`. -/ | |
lemma filter.eventually_eq.eventually_eq_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : | |
∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g := | |
h.eventually_nhds | |
/-- If `f x ≤ g x` in a neighbourhood of `a`, then for `y` sufficiently close to `a` we have | |
`f x ≤ g x` in a neighbourhood of `y`. -/ | |
lemma filter.eventually_le.eventually_le_nhds [has_le β] {f g : α → β} {a : α} (h : f ≤ᶠ[𝓝 a] g) : | |
∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g := | |
h.eventually_nhds | |
theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) : | |
(∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) := | |
((nhds_basis_opens x).forall_iff hP).trans $ by simp only [and_comm (x ∈ _), and_imp] | |
theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t) | |
(l : filter β) : | |
(∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) := | |
all_mem_nhds _ _ (λ s t ssubt h, mem_of_superset h (hf s t ssubt)) | |
theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} : | |
rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) := | |
all_mem_nhds_filter _ _ (λ s t, id) _ | |
theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} : | |
rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) := | |
by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono } | |
theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} : | |
ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) := | |
rtendsto_nhds | |
theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} : | |
ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) := | |
rtendsto'_nhds | |
theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} : | |
tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) := | |
all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _ | |
lemma tendsto_at_top_nhds [nonempty β] [semilattice_sup β] {f : β → α} {a : α} : | |
(tendsto f at_top (𝓝 a)) ↔ ∀ U : set α, a ∈ U → is_open U → ∃ N, ∀ n, N ≤ n → f n ∈ U := | |
(at_top_basis.tendsto_iff (nhds_basis_opens a)).trans $ | |
by simp only [and_imp, exists_prop, true_and, mem_Ici, ge_iff_le] | |
lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) := | |
tendsto_nhds.mpr $ assume s hs ha, univ_mem' $ assume _, ha | |
lemma tendsto_at_top_of_eventually_const {ι : Type*} [semilattice_sup ι] [nonempty ι] | |
{x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≥ i₀, u i = x) : tendsto u at_top (𝓝 x) := | |
tendsto.congr' (eventually_eq.symm (eventually_at_top.mpr ⟨i₀, h⟩)) tendsto_const_nhds | |
lemma tendsto_at_bot_of_eventually_const {ι : Type*} [semilattice_inf ι] [nonempty ι] | |
{x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≤ i₀, u i = x) : tendsto u at_bot (𝓝 x) := | |
tendsto.congr' (eventually_eq.symm (eventually_at_bot.mpr ⟨i₀, h⟩)) tendsto_const_nhds | |
lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) := | |
assume a s hs, mem_pure.2 $ mem_of_mem_nhds hs | |
lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) : | |
tendsto f (pure a) (𝓝 (f a)) := | |
(tendsto_pure_pure f a).mono_right (pure_le_nhds _) | |
lemma order_top.tendsto_at_top_nhds {α : Type*} [partial_order α] [order_top α] | |
[topological_space β] (f : α → β) : tendsto f at_top (𝓝 $ f ⊤) := | |
(tendsto_at_top_pure f).mono_right (pure_le_nhds _) | |
@[simp] instance nhds_ne_bot {a : α} : ne_bot (𝓝 a) := | |
ne_bot_of_le (pure_le_nhds a) | |
/-! | |
### Cluster points | |
In this section we define [cluster points](https://en.wikipedia.org/wiki/Limit_point) | |
(also known as limit points and accumulation points) of a filter and of a sequence. | |
-/ | |
/-- A point `x` is a cluster point of a filter `F` if 𝓝 x ⊓ F ≠ ⊥. Also known as | |
an accumulation point or a limit point. -/ | |
def cluster_pt (x : α) (F : filter α) : Prop := ne_bot (𝓝 x ⊓ F) | |
lemma cluster_pt.ne_bot {x : α} {F : filter α} (h : cluster_pt x F) : ne_bot (𝓝 x ⊓ F) := h | |
lemma filter.has_basis.cluster_pt_iff {ιa ιF} {pa : ιa → Prop} {sa : ιa → set α} | |
{pF : ιF → Prop} {sF : ιF → set α} {F : filter α} | |
(ha : (𝓝 a).has_basis pa sa) (hF : F.has_basis pF sF) : | |
cluster_pt a F ↔ ∀ ⦃i⦄ (hi : pa i) ⦃j⦄ (hj : pF j), (sa i ∩ sF j).nonempty := | |
ha.inf_basis_ne_bot_iff hF | |
lemma cluster_pt_iff {x : α} {F : filter α} : | |
cluster_pt x F ↔ ∀ ⦃U : set α⦄ (hU : U ∈ 𝓝 x) ⦃V⦄ (hV : V ∈ F), (U ∩ V).nonempty := | |
inf_ne_bot_iff | |
/-- `x` is a cluster point of a set `s` if every neighbourhood of `x` meets `s` on a nonempty | |
set. -/ | |
lemma cluster_pt_principal_iff {x : α} {s : set α} : | |
cluster_pt x (𝓟 s) ↔ ∀ U ∈ 𝓝 x, (U ∩ s).nonempty := | |
inf_principal_ne_bot_iff | |
lemma cluster_pt_principal_iff_frequently {x : α} {s : set α} : | |
cluster_pt x (𝓟 s) ↔ ∃ᶠ y in 𝓝 x, y ∈ s := | |
by simp only [cluster_pt_principal_iff, frequently_iff, set.nonempty, exists_prop, mem_inter_iff] | |
lemma cluster_pt.of_le_nhds {x : α} {f : filter α} (H : f ≤ 𝓝 x) [ne_bot f] : cluster_pt x f := | |
by rwa [cluster_pt, inf_eq_right.mpr H] | |
lemma cluster_pt.of_le_nhds' {x : α} {f : filter α} (H : f ≤ 𝓝 x) (hf : ne_bot f) : | |
cluster_pt x f := | |
cluster_pt.of_le_nhds H | |
lemma cluster_pt.of_nhds_le {x : α} {f : filter α} (H : 𝓝 x ≤ f) : cluster_pt x f := | |
by simp only [cluster_pt, inf_eq_left.mpr H, nhds_ne_bot] | |
lemma cluster_pt.mono {x : α} {f g : filter α} (H : cluster_pt x f) (h : f ≤ g) : | |
cluster_pt x g := | |
⟨ne_bot_of_le_ne_bot H.ne $ inf_le_inf_left _ h⟩ | |
lemma cluster_pt.of_inf_left {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : | |
cluster_pt x f := | |
H.mono inf_le_left | |
lemma cluster_pt.of_inf_right {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : | |
cluster_pt x g := | |
H.mono inf_le_right | |
lemma ultrafilter.cluster_pt_iff {x : α} {f : ultrafilter α} : cluster_pt x f ↔ ↑f ≤ 𝓝 x := | |
⟨f.le_of_inf_ne_bot', λ h, cluster_pt.of_le_nhds h⟩ | |
/-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point | |
of `map u F`. -/ | |
def map_cluster_pt {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : Prop := cluster_pt x (map u F) | |
lemma map_cluster_pt_iff {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : | |
map_cluster_pt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := | |
by { simp_rw [map_cluster_pt, cluster_pt, inf_ne_bot_iff_frequently_left, frequently_map], refl } | |
lemma map_cluster_pt_of_comp {ι δ :Type*} {F : filter ι} {φ : δ → ι} {p : filter δ} | |
{x : α} {u : ι → α} [ne_bot p] (h : tendsto φ p F) (H : tendsto (u ∘ φ) p (𝓝 x)) : | |
map_cluster_pt x F u := | |
begin | |
have := calc | |
map (u ∘ φ) p = map u (map φ p) : map_map | |
... ≤ map u F : map_mono h, | |
have : map (u ∘ φ) p ≤ 𝓝 x ⊓ map u F, | |
from le_inf H this, | |
exact ne_bot_of_le this | |
end | |
/-! | |
### Interior, closure and frontier in terms of neighborhoods | |
-/ | |
lemma interior_eq_nhds' {s : set α} : interior s = {a | s ∈ 𝓝 a} := | |
set.ext $ λ x, by simp only [mem_interior, mem_nhds_iff, mem_set_of_eq] | |
lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ 𝓟 s} := | |
interior_eq_nhds'.trans $ by simp only [le_principal_iff] | |
lemma mem_interior_iff_mem_nhds {s : set α} {a : α} : | |
a ∈ interior s ↔ s ∈ 𝓝 a := | |
by rw [interior_eq_nhds', mem_set_of_eq] | |
@[simp] lemma interior_mem_nhds {s : set α} {a : α} : | |
interior s ∈ 𝓝 a ↔ s ∈ 𝓝 a := | |
⟨λ h, mem_of_superset h interior_subset, | |
λ h, is_open.mem_nhds is_open_interior (mem_interior_iff_mem_nhds.2 h)⟩ | |
lemma interior_set_of_eq {p : α → Prop} : | |
interior {x | p x} = {x | ∀ᶠ y in 𝓝 x, p y} := | |
interior_eq_nhds' | |
lemma is_open_set_of_eventually_nhds {p : α → Prop} : | |
is_open {x | ∀ᶠ y in 𝓝 x, p y} := | |
by simp only [← interior_set_of_eq, is_open_interior] | |
lemma subset_interior_iff_nhds {s V : set α} : s ⊆ interior V ↔ ∀ x ∈ s, V ∈ 𝓝 x := | |
show (∀ x, x ∈ s → x ∈ _) ↔ _, by simp_rw mem_interior_iff_mem_nhds | |
lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ 𝓟 s := | |
calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm | |
... ↔ (∀a∈s, 𝓝 a ≤ 𝓟 s) : by rw [interior_eq_nhds]; refl | |
lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a := | |
is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff | |
theorem is_open_iff_ultrafilter {s : set α} : | |
is_open s ↔ (∀ (x ∈ s) (l : ultrafilter α), ↑l ≤ 𝓝 x → s ∈ l) := | |
by simp_rw [is_open_iff_mem_nhds, ← mem_iff_ultrafilter] | |
lemma is_open_singleton_iff_nhds_eq_pure {α : Type*} [topological_space α] (a : α) : | |
is_open ({a} : set α) ↔ 𝓝 a = pure a := | |
begin | |
split, | |
{ intros h, | |
apply le_antisymm _ (pure_le_nhds a), | |
rw le_pure_iff, | |
exact h.mem_nhds (mem_singleton a) }, | |
{ intros h, | |
simp [is_open_iff_nhds, h] } | |
end | |
lemma mem_closure_iff_frequently {s : set α} {a : α} : a ∈ closure s ↔ ∃ᶠ x in 𝓝 a, x ∈ s := | |
by rw [filter.frequently, filter.eventually, ← mem_interior_iff_mem_nhds, | |
closure_eq_compl_interior_compl]; refl | |
alias mem_closure_iff_frequently ↔ _ filter.frequently.mem_closure | |
/-- The set of cluster points of a filter is closed. In particular, the set of limit points | |
of a sequence is closed. -/ | |
lemma is_closed_set_of_cluster_pt {f : filter α} : is_closed {x | cluster_pt x f} := | |
begin | |
simp only [cluster_pt, inf_ne_bot_iff_frequently_left, set_of_forall, imp_iff_not_or], | |
refine is_closed_Inter (λ p, is_closed.union _ _); apply is_closed_compl_iff.2, | |
exacts [is_open_set_of_eventually_nhds, is_open_const] | |
end | |
theorem mem_closure_iff_cluster_pt {s : set α} {a : α} : a ∈ closure s ↔ cluster_pt a (𝓟 s) := | |
mem_closure_iff_frequently.trans cluster_pt_principal_iff_frequently.symm | |
lemma mem_closure_iff_nhds_ne_bot {s : set α} : a ∈ closure s ↔ 𝓝 a ⊓ 𝓟 s ≠ ⊥ := | |
mem_closure_iff_cluster_pt.trans ne_bot_iff | |
lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} : | |
x ∈ closure s ↔ ne_bot (𝓝[s] x) := | |
mem_closure_iff_cluster_pt | |
/-- If `x` is not an isolated point of a topological space, then `{x}ᶜ` is dense in the whole | |
space. -/ | |
lemma dense_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] : dense ({x}ᶜ : set α) := | |
begin | |
intro y, | |
unfreezingI { rcases eq_or_ne y x with rfl|hne }, | |
{ rwa mem_closure_iff_nhds_within_ne_bot }, | |
{ exact subset_closure hne } | |
end | |
/-- If `x` is not an isolated point of a topological space, then the closure of `{x}ᶜ` is the whole | |
space. -/ | |
@[simp] lemma closure_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] : | |
closure {x}ᶜ = (univ : set α) := | |
(dense_compl_singleton x).closure_eq | |
/-- If `x` is not an isolated point of a topological space, then the interior of `{x}` is empty. -/ | |
@[simp] lemma interior_singleton (x : α) [ne_bot (𝓝[≠] x)] : | |
interior {x} = (∅ : set α) := | |
interior_eq_empty_iff_dense_compl.2 (dense_compl_singleton x) | |
lemma closure_eq_cluster_pts {s : set α} : closure s = {a | cluster_pt a (𝓟 s)} := | |
set.ext $ λ x, mem_closure_iff_cluster_pt | |
theorem mem_closure_iff_nhds {s : set α} {a : α} : | |
a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty := | |
mem_closure_iff_cluster_pt.trans cluster_pt_principal_iff | |
theorem mem_closure_iff_nhds' {s : set α} {a : α} : | |
a ∈ closure s ↔ ∀ t ∈ 𝓝 a, ∃ y : s, ↑y ∈ t := | |
by simp only [mem_closure_iff_nhds, set.nonempty_inter_iff_exists_right] | |
theorem mem_closure_iff_comap_ne_bot {A : set α} {x : α} : | |
x ∈ closure A ↔ ne_bot (comap (coe : A → α) (𝓝 x)) := | |
by simp_rw [mem_closure_iff_nhds, comap_ne_bot_iff, set.nonempty_inter_iff_exists_right] | |
theorem mem_closure_iff_nhds_basis' {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) | |
{t : set α} : | |
a ∈ closure t ↔ ∀ i, p i → (s i ∩ t).nonempty := | |
mem_closure_iff_cluster_pt.trans $ (h.cluster_pt_iff (has_basis_principal _)).trans $ | |
by simp only [exists_prop, forall_const] | |
theorem mem_closure_iff_nhds_basis {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) | |
{t : set α} : | |
a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i := | |
(mem_closure_iff_nhds_basis' h).trans $ | |
by simp only [set.nonempty, mem_inter_eq, exists_prop, and_comm] | |
/-- `x` belongs to the closure of `s` if and only if some ultrafilter | |
supported on `s` converges to `x`. -/ | |
lemma mem_closure_iff_ultrafilter {s : set α} {x : α} : | |
x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u ∧ ↑u ≤ 𝓝 x := | |
by simp [closure_eq_cluster_pts, cluster_pt, ← exists_ultrafilter_iff, and.comm] | |
lemma is_closed_iff_cluster_pt {s : set α} : is_closed s ↔ ∀a, cluster_pt a (𝓟 s) → a ∈ s := | |
calc is_closed s ↔ closure s ⊆ s : closure_subset_iff_is_closed.symm | |
... ↔ (∀a, cluster_pt a (𝓟 s) → a ∈ s) : by simp only [subset_def, mem_closure_iff_cluster_pt] | |
lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).nonempty) → x ∈ s := | |
by simp_rw [is_closed_iff_cluster_pt, cluster_pt, inf_principal_ne_bot_iff] | |
lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) := | |
begin | |
rintro a ⟨hs, ht⟩, | |
have : s ∈ 𝓝 a := is_open.mem_nhds h hs, | |
rw mem_closure_iff_nhds_ne_bot at ht ⊢, | |
rwa [← inf_principal, ← inf_assoc, inf_eq_left.2 (le_principal_iff.2 this)], | |
end | |
lemma closure_inter_open' {s t : set α} (h : is_open t) : closure s ∩ t ⊆ closure (s ∩ t) := | |
by simpa only [inter_comm] using closure_inter_open h | |
lemma dense.open_subset_closure_inter {s t : set α} (hs : dense s) (ht : is_open t) : | |
t ⊆ closure (t ∩ s) := | |
calc t = t ∩ closure s : by rw [hs.closure_eq, inter_univ] | |
... ⊆ closure (t ∩ s) : closure_inter_open ht | |
lemma mem_closure_of_mem_closure_union {s₁ s₂ : set α} {x : α} (h : x ∈ closure (s₁ ∪ s₂)) | |
(h₁ : s₁ᶜ ∈ 𝓝 x) : x ∈ closure s₂ := | |
begin | |
rw mem_closure_iff_nhds_ne_bot at *, | |
rwa ← calc | |
𝓝 x ⊓ principal (s₁ ∪ s₂) = 𝓝 x ⊓ (principal s₁ ⊔ principal s₂) : by rw sup_principal | |
... = (𝓝 x ⊓ principal s₁) ⊔ (𝓝 x ⊓ principal s₂) : inf_sup_left | |
... = ⊥ ⊔ 𝓝 x ⊓ principal s₂ : by rw inf_principal_eq_bot.mpr h₁ | |
... = 𝓝 x ⊓ principal s₂ : bot_sup_eq | |
end | |
/-- The intersection of an open dense set with a dense set is a dense set. -/ | |
lemma dense.inter_of_open_left {s t : set α} (hs : dense s) (ht : dense t) (hso : is_open s) : | |
dense (s ∩ t) := | |
λ x, (closure_minimal (closure_inter_open hso) is_closed_closure) $ | |
by simp [hs.closure_eq, ht.closure_eq] | |
/-- The intersection of a dense set with an open dense set is a dense set. -/ | |
lemma dense.inter_of_open_right {s t : set α} (hs : dense s) (ht : dense t) (hto : is_open t) : | |
dense (s ∩ t) := | |
inter_comm t s ▸ ht.inter_of_open_left hs hto | |
lemma dense.inter_nhds_nonempty {s t : set α} (hs : dense s) {x : α} (ht : t ∈ 𝓝 x) : | |
(s ∩ t).nonempty := | |
let ⟨U, hsub, ho, hx⟩ := mem_nhds_iff.1 ht in | |
(hs.inter_open_nonempty U ho ⟨x, hx⟩).mono $ λ y hy, ⟨hy.2, hsub hy.1⟩ | |
lemma closure_diff {s t : set α} : closure s \ closure t ⊆ closure (s \ t) := | |
calc closure s \ closure t = (closure t)ᶜ ∩ closure s : by simp only [diff_eq, inter_comm] | |
... ⊆ closure ((closure t)ᶜ ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure | |
... = closure (s \ closure t) : by simp only [diff_eq, inter_comm] | |
... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure | |
lemma filter.frequently.mem_of_closed {a : α} {s : set α} (h : ∃ᶠ x in 𝓝 a, x ∈ s) | |
(hs : is_closed s) : a ∈ s := | |
hs.closure_subset h.mem_closure | |
lemma is_closed.mem_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} | |
(hs : is_closed s) (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ s := | |
(hf.frequently $ show ∃ᶠ x in b, (λ y, y ∈ s) (f x), from h).mem_of_closed hs | |
lemma is_closed.mem_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} | |
[ne_bot b] (hs : is_closed s) (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ s := | |
hs.mem_of_frequently_of_tendsto h.frequently hf | |
lemma mem_closure_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} | |
(h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ closure s := | |
filter.frequently.mem_closure $ hf.frequently h | |
lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} | |
[ne_bot b] (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ closure s := | |
mem_closure_of_frequently_of_tendsto h.frequently hf | |
/-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter. | |
Then `f` tends to `a` along `l` restricted to `s` if and only if it tends to `a` along `l`. -/ | |
lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β} | |
{a : α} (h : ∀ x ∉ s, f x = a) : | |
tendsto f (l ⊓ 𝓟 s) (𝓝 a) ↔ tendsto f l (𝓝 a) := | |
begin | |
rw [tendsto_iff_comap, tendsto_iff_comap], | |
replace h : 𝓟 sᶜ ≤ comap f (𝓝 a), | |
{ rintros U ⟨t, ht, htU⟩ x hx, | |
have : f x ∈ t, from (h x hx).symm ▸ mem_of_mem_nhds ht, | |
exact htU this }, | |
refine ⟨λ h', _, le_trans inf_le_left⟩, | |
have := sup_le h' h, | |
rw [sup_inf_right, sup_principal, union_compl_self, principal_univ, | |
inf_top_eq, sup_le_iff] at this, | |
exact this.1 | |
end | |
/-! | |
### Limits of filters in topological spaces | |
-/ | |
section lim | |
/-- If `f` is a filter, then `Lim f` is a limit of the filter, if it exists. -/ | |
noncomputable def Lim [nonempty α] (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a | |
/-- | |
If `f` is a filter satisfying `ne_bot f`, then `Lim' f` is a limit of the filter, if it exists. | |
-/ | |
def Lim' (f : filter α) [ne_bot f] : α := @Lim _ _ (nonempty_of_ne_bot f) f | |
/-- | |
If `F` is an ultrafilter, then `filter.ultrafilter.Lim F` is a limit of the filter, if it exists. | |
Note that dot notation `F.Lim` can be used for `F : ultrafilter α`. | |
-/ | |
def ultrafilter.Lim : ultrafilter α → α := λ F, Lim' F | |
/-- If `f` is a filter in `β` and `g : β → α` is a function, then `lim f` is a limit of `g` at `f`, | |
if it exists. -/ | |
noncomputable def lim [nonempty α] (f : filter β) (g : β → α) : α := | |
Lim (f.map g) | |
/-- If a filter `f` is majorated by some `𝓝 a`, then it is majorated by `𝓝 (Lim f)`. We formulate | |
this lemma with a `[nonempty α]` argument of `Lim` derived from `h` to make it useful for types | |
without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify | |
this instance with any other instance. -/ | |
lemma le_nhds_Lim {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (@Lim _ _ (nonempty_of_exists h) f) := | |
epsilon_spec h | |
/-- If `g` tends to some `𝓝 a` along `f`, then it tends to `𝓝 (lim f g)`. We formulate | |
this lemma with a `[nonempty α]` argument of `lim` derived from `h` to make it useful for types | |
without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify | |
this instance with any other instance. -/ | |
lemma tendsto_nhds_lim {f : filter β} {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) : | |
tendsto g f (𝓝 $ @lim _ _ _ (nonempty_of_exists h) f g) := | |
le_nhds_Lim h | |
end lim | |
end topological_space | |
/-! | |
### Continuity | |
-/ | |
section continuous | |
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} | |
variables [topological_space α] [topological_space β] [topological_space γ] | |
open_locale topological_space | |
/-- A function between topological spaces is continuous if the preimage | |
of every open set is open. Registered as a structure to make sure it is not unfolded by Lean. -/ | |
structure continuous (f : α → β) : Prop := | |
(is_open_preimage : ∀s, is_open s → is_open (f ⁻¹' s)) | |
lemma continuous_def {f : α → β} : continuous f ↔ (∀s, is_open s → is_open (f ⁻¹' s)) := | |
⟨λ hf s hs, hf.is_open_preimage s hs, λ h, ⟨h⟩⟩ | |
lemma is_open.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_open s) : | |
is_open (f ⁻¹' s) := | |
hf.is_open_preimage s h | |
lemma continuous.congr {f g : α → β} (h : continuous f) (h' : ∀ x, f x = g x) : continuous g := | |
by { convert h, ext, rw h' } | |
/-- A function between topological spaces is continuous at a point `x₀` | |
if `f x` tends to `f x₀` when `x` tends to `x₀`. -/ | |
def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x)) | |
lemma continuous_at.tendsto {f : α → β} {x : α} (h : continuous_at f x) : | |
tendsto f (𝓝 x) (𝓝 (f x)) := | |
h | |
lemma continuous_at_def {f : α → β} {x : α} : continuous_at f x ↔ ∀ A ∈ 𝓝 (f x), f ⁻¹' A ∈ 𝓝 x := | |
iff.rfl | |
lemma continuous_at_congr {f g : α → β} {x : α} (h : f =ᶠ[𝓝 x] g) : | |
continuous_at f x ↔ continuous_at g x := | |
by simp only [continuous_at, tendsto_congr' h, h.eq_of_nhds] | |
lemma continuous_at.congr {f g : α → β} {x : α} (hf : continuous_at f x) (h : f =ᶠ[𝓝 x] g) : | |
continuous_at g x := | |
(continuous_at_congr h).1 hf | |
lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x) | |
(ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x := | |
h ht | |
lemma eventually_eq_zero_nhds {M₀} [has_zero M₀] {a : α} {f : α → M₀} : | |
f =ᶠ[𝓝 a] 0 ↔ a ∉ closure (function.support f) := | |
by rw [← mem_compl_eq, ← interior_compl, mem_interior_iff_mem_nhds, function.compl_support]; refl | |
lemma cluster_pt.map {x : α} {la : filter α} {lb : filter β} (H : cluster_pt x la) | |
{f : α → β} (hfc : continuous_at f x) (hf : tendsto f la lb) : | |
cluster_pt (f x) lb := | |
⟨ne_bot_of_le_ne_bot ((map_ne_bot_iff f).2 H).ne $ hfc.tendsto.inf hf⟩ | |
/-- See also `interior_preimage_subset_preimage_interior`. -/ | |
lemma preimage_interior_subset_interior_preimage {f : α → β} {s : set β} | |
(hf : continuous f) : f⁻¹' (interior s) ⊆ interior (f⁻¹' s) := | |
interior_maximal (preimage_mono interior_subset) (is_open_interior.preimage hf) | |
lemma continuous_id : continuous (id : α → α) := | |
continuous_def.2 $ assume s h, h | |
lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) : | |
continuous (g ∘ f) := | |
continuous_def.2 $ assume s h, (h.preimage hg).preimage hf | |
lemma continuous.iterate {f : α → α} (h : continuous f) (n : ℕ) : continuous (f^[n]) := | |
nat.rec_on n continuous_id (λ n ihn, ihn.comp h) | |
lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α} | |
(hg : continuous_at g (f x)) (hf : continuous_at f x) : | |
continuous_at (g ∘ f) x := | |
hg.comp hf | |
lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) : | |
tendsto f (𝓝 x) (𝓝 (f x)) := | |
((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $ | |
λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, ht.preimage hf⟩, subset.refl _⟩ | |
/-- A version of `continuous.tendsto` that allows one to specify a simpler form of the limit. | |
E.g., one can write `continuous_exp.tendsto' 0 1 exp_zero`. -/ | |
lemma continuous.tendsto' {f : α → β} (hf : continuous f) (x : α) (y : β) (h : f x = y) : | |
tendsto f (𝓝 x) (𝓝 y) := | |
h ▸ hf.tendsto x | |
lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) : | |
continuous_at f x := | |
h.tendsto x | |
lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x := | |
⟨continuous.tendsto, | |
assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)), | |
continuous_def.2 $ | |
assume s, assume hs : is_open s, | |
have ∀a, f a ∈ s → s ∈ 𝓝 (f a), | |
from λ a ha, is_open.mem_nhds hs ha, | |
show is_open (f ⁻¹' s), | |
from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩ | |
lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x := | |
tendsto_const_nhds | |
lemma continuous_const {b : β} : continuous (λa:α, b) := | |
continuous_iff_continuous_at.mpr $ assume a, continuous_at_const | |
lemma filter.eventually_eq.continuous_at {x : α} {f : α → β} {y : β} (h : f =ᶠ[𝓝 x] (λ _, y)) : | |
continuous_at f x := | |
(continuous_at_congr h).2 tendsto_const_nhds | |
lemma continuous_of_const {f : α → β} (h : ∀ x y, f x = f y) : continuous f := | |
continuous_iff_continuous_at.mpr $ λ x, filter.eventually_eq.continuous_at $ | |
eventually_of_forall (λ y, h y x) | |
lemma continuous_at_id {x : α} : continuous_at id x := | |
continuous_id.continuous_at | |
lemma continuous_at.iterate {f : α → α} {x : α} (hf : continuous_at f x) (hx : f x = x) (n : ℕ) : | |
continuous_at (f^[n]) x := | |
nat.rec_on n continuous_at_id $ λ n ihn, | |
show continuous_at (f^[n] ∘ f) x, | |
from continuous_at.comp (hx.symm ▸ ihn) hf | |
lemma continuous_iff_is_closed {f : α → β} : | |
continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) := | |
⟨assume hf s hs, by simpa using (continuous_def.1 hf sᶜ hs.is_open_compl).is_closed_compl, | |
assume hf, continuous_def.2 $ assume s, | |
by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩ | |
lemma is_closed.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_closed s) : | |
is_closed (f ⁻¹' s) := | |
continuous_iff_is_closed.mp hf s h | |
lemma mem_closure_image {f : α → β} {x : α} {s : set α} (hf : continuous_at f x) | |
(hx : x ∈ closure s) : f x ∈ closure (f '' s) := | |
mem_closure_of_frequently_of_tendsto | |
((mem_closure_iff_frequently.1 hx).mono (λ x, mem_image_of_mem _)) hf | |
lemma continuous_at_iff_ultrafilter {f : α → β} {x} : continuous_at f x ↔ | |
∀ g : ultrafilter α, ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := | |
tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x)) | |
lemma continuous_iff_ultrafilter {f : α → β} : | |
continuous f ↔ ∀ x (g : ultrafilter α), ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := | |
by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter] | |
lemma continuous.closure_preimage_subset {f : α → β} | |
(hf : continuous f) (t : set β) : | |
closure (f ⁻¹' t) ⊆ f ⁻¹' (closure t) := | |
begin | |
rw ← (is_closed_closure.preimage hf).closure_eq, | |
exact closure_mono (preimage_mono subset_closure), | |
end | |
lemma continuous.frontier_preimage_subset | |
{f : α → β} (hf : continuous f) (t : set β) : | |
frontier (f ⁻¹' t) ⊆ f ⁻¹' (frontier t) := | |
diff_subset_diff (hf.closure_preimage_subset t) (preimage_interior_subset_interior_preimage hf) | |
/-! ### Continuity and partial functions -/ | |
/-- Continuity of a partial function -/ | |
def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s) | |
lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom := | |
by rw [←pfun.preimage_univ]; exact h _ is_open_univ | |
lemma pcontinuous_iff' {f : α →. β} : | |
pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) := | |
begin | |
split, | |
{ intros h x y h', | |
simp only [ptendsto'_def, mem_nhds_iff], | |
rintros s ⟨t, tsubs, opent, yt⟩, | |
exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ }, | |
intros hf s os, | |
rw is_open_iff_nhds, | |
rintros x ⟨y, ys, fxy⟩ t, | |
rw [mem_principal], | |
assume h : f.preimage s ⊆ t, | |
change t ∈ 𝓝 x, | |
apply mem_of_superset _ h, | |
have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x, | |
{ intros s hs, | |
have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy, | |
rw ptendsto'_def at this, | |
exact this s hs }, | |
show f.preimage s ∈ 𝓝 x, | |
apply h', rw mem_nhds_iff, exact ⟨s, set.subset.refl _, os, ys⟩ | |
end | |
/-- If a continuous map `f` maps `s` to `t`, then it maps `closure s` to `closure t`. -/ | |
lemma set.maps_to.closure {s : set α} {t : set β} {f : α → β} (h : maps_to f s t) | |
(hc : continuous f) : maps_to f (closure s) (closure t) := | |
begin | |
simp only [maps_to, mem_closure_iff_cluster_pt], | |
exact λ x hx, hx.map hc.continuous_at (tendsto_principal_principal.2 h) | |
end | |
lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) : | |
f '' closure s ⊆ closure (f '' s) := | |
((maps_to_image f s).closure h).image_subset | |
lemma closure_subset_preimage_closure_image {f : α → β} {s : set α} (h : continuous f) : | |
closure s ⊆ f ⁻¹' (closure (f '' s)) := | |
by { rw ← set.image_subset_iff, exact image_closure_subset_closure_image h } | |
lemma map_mem_closure {s : set α} {t : set β} {f : α → β} {a : α} | |
(hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t := | |
set.maps_to.closure ht hf ha | |
/-! | |
### Function with dense range | |
-/ | |
section dense_range | |
variables {κ ι : Type*} (f : κ → β) (g : β → γ) | |
/-- `f : ι → β` has dense range if its range (image) is a dense subset of β. -/ | |
def dense_range := dense (range f) | |
variables {f} | |
/-- A surjective map has dense range. -/ | |
lemma function.surjective.dense_range (hf : function.surjective f) : dense_range f := | |
λ x, by simp [hf.range_eq] | |
lemma dense_range_iff_closure_range : dense_range f ↔ closure (range f) = univ := | |
dense_iff_closure_eq | |
lemma dense_range.closure_range (h : dense_range f) : closure (range f) = univ := | |
h.closure_eq | |
lemma dense.dense_range_coe {s : set α} (h : dense s) : dense_range (coe : s → α) := | |
by simpa only [dense_range, subtype.range_coe_subtype] | |
lemma continuous.range_subset_closure_image_dense {f : α → β} (hf : continuous f) | |
{s : set α} (hs : dense s) : | |
range f ⊆ closure (f '' s) := | |
by { rw [← image_univ, ← hs.closure_eq], exact image_closure_subset_closure_image hf } | |
/-- The image of a dense set under a continuous map with dense range is a dense set. -/ | |
lemma dense_range.dense_image {f : α → β} (hf' : dense_range f) (hf : continuous f) | |
{s : set α} (hs : dense s) : | |
dense (f '' s) := | |
(hf'.mono $ hf.range_subset_closure_image_dense hs).of_closure | |
/-- If `f` has dense range and `s` is an open set in the codomain of `f`, then the image of the | |
preimage of `s` under `f` is dense in `s`. -/ | |
lemma dense_range.subset_closure_image_preimage_of_is_open (hf : dense_range f) {s : set β} | |
(hs : is_open s) : s ⊆ closure (f '' (f ⁻¹' s)) := | |
by { rw image_preimage_eq_inter_range, exact hf.open_subset_closure_inter hs } | |
/-- If a continuous map with dense range maps a dense set to a subset of `t`, then `t` is a dense | |
set. -/ | |
lemma dense_range.dense_of_maps_to {f : α → β} (hf' : dense_range f) (hf : continuous f) | |
{s : set α} (hs : dense s) {t : set β} (ht : maps_to f s t) : | |
dense t := | |
(hf'.dense_image hf hs).mono ht.image_subset | |
/-- Composition of a continuous map with dense range and a function with dense range has dense | |
range. -/ | |
lemma dense_range.comp {g : β → γ} {f : κ → β} (hg : dense_range g) (hf : dense_range f) | |
(cg : continuous g) : | |
dense_range (g ∘ f) := | |
by { rw [dense_range, range_comp], exact hg.dense_image cg hf } | |
lemma dense_range.nonempty_iff (hf : dense_range f) : nonempty κ ↔ nonempty β := | |
range_nonempty_iff_nonempty.symm.trans hf.nonempty_iff | |
lemma dense_range.nonempty [h : nonempty β] (hf : dense_range f) : nonempty κ := | |
hf.nonempty_iff.mpr h | |
/-- Given a function `f : α → β` with dense range and `b : β`, returns some `a : α`. -/ | |
def dense_range.some (hf : dense_range f) (b : β) : κ := | |
classical.choice $ hf.nonempty_iff.mpr ⟨b⟩ | |
lemma dense_range.exists_mem_open (hf : dense_range f) {s : set β} (ho : is_open s) | |
(hs : s.nonempty) : | |
∃ a, f a ∈ s := | |
exists_range_iff.1 $ hf.exists_mem_open ho hs | |
lemma dense_range.mem_nhds {f : κ → β} (h : dense_range f) {b : β} {U : set β} | |
(U_in : U ∈ 𝓝 b) : ∃ a, f a ∈ U := | |
let ⟨a, ha⟩ := h.exists_mem_open is_open_interior ⟨b, mem_interior_iff_mem_nhds.2 U_in⟩ | |
in ⟨a, interior_subset ha⟩ | |
end dense_range | |
end continuous | |
/-- | |
The library contains many lemmas stating that functions/operations are continuous. There are many | |
ways to formulate the continuity of operations. Some are more convenient than others. | |
Note: for the most part this note also applies to other properties | |
(`measurable`, `differentiable`, `continuous_on`, ...). | |
### The traditional way | |
As an example, let's look at addition `(+) : M → M → M`. We can state that this is continuous | |
in different definitionally equal ways (omitting some typing information) | |
* `continuous (λ p, p.1 + p.2)`; | |
* `continuous (function.uncurry (+))`; | |
* `continuous ↿(+)`. (`↿` is notation for recursively uncurrying a function) | |
However, lemmas with this conclusion are not nice to use in practice because | |
1. They confuse the elaborator. The following two examples fail, because of limitations in the | |
elaboration process. | |
``` | |
variables {M : Type*} [has_add M] [topological_space M] [has_continuous_add M] | |
example : continuous (λ x : M, x + x) := | |
continuous_add.comp _ | |
example : continuous (λ x : M, x + x) := | |
continuous_add.comp (continuous_id.prod_mk continuous_id) | |
``` | |
The second is a valid proof, which is accepted if you write it as | |
`continuous_add.comp (continuous_id.prod_mk continuous_id : _)` | |
2. If the operation has more than 2 arguments, they are impractical to use, because in your | |
application the arguments in the domain might be in a different order or associated differently. | |
### The convenient way | |
A much more convenient way to write continuity lemmas is like `continuous.add`: | |
``` | |
continuous.add {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λ x, f x + g x) | |
``` | |
The conclusion can be `continuous (f + g)`, which is definitionally equal. | |
This has the following advantages | |
* It supports projection notation, so is shorter to write. | |
* `continuous.add _ _` is recognized correctly by the elaborator and gives useful new goals. | |
* It works generally, since the domain is a variable. | |
As an example for an unary operation, we have `continuous.neg`. | |
``` | |
continuous.neg {f : α → G} (hf : continuous f) : continuous (λ x, -f x) | |
``` | |
For unary functions, the elaborator is not confused when applying the traditional lemma | |
(like `continuous_neg`), but it's still convenient to have the short version available (compare | |
`hf.neg.neg.neg` with `continuous_neg.comp $ continuous_neg.comp $ continuous_neg.comp hf`). | |
As a harder example, consider an operation of the following type: | |
``` | |
def strans {x : F} (γ γ' : path x x) (t₀ : I) : path x x | |
``` | |
The precise definition is not important, only its type. | |
The correct continuity principle for this operation is something like this: | |
``` | |
{f : X → F} {γ γ' : ∀ x, path (f x) (f x)} {t₀ s : X → I} | |
(hγ : continuous ↿γ) (hγ' : continuous ↿γ') | |
(ht : continuous t₀) (hs : continuous s) : | |
continuous (λ x, strans (γ x) (γ' x) (t x) (s x)) | |
``` | |
Note that *all* arguments of `strans` are indexed over `X`, even the basepoint `x`, and the last | |
argument `s` that arises since `path x x` has a coercion to `I → F`. The paths `γ` and `γ'` (which | |
are unary functions from `I`) become binary functions in the continuity lemma. | |
### Summary | |
* Make sure that your continuity lemmas are stated in the most general way, and in a convenient | |
form. That means that: | |
- The conclusion has a variable `X` as domain (not something like `Y × Z`); | |
- Wherever possible, all point arguments `c : Y` are replaced by functions `c : X → Y`; | |
- All `n`-ary function arguments are replaced by `n+1`-ary functions | |
(`f : Y → Z` becomes `f : X → Y → Z`); | |
- All (relevant) arguments have continuity assumptions, and perhaps there are additional | |
assumptions needed to make the operation continuous; | |
- The function in the conclusion is fully applied. | |
* These remarks are mostly about the format of the *conclusion* of a continuity lemma. | |
In assumptions it's fine to state that a function with more than 1 argument is continuous using | |
`↿` or `function.uncurry`. | |
### Functions with discontinuities | |
In some cases, you want to work with discontinuous functions, and in certain expressions they are | |
still continuous. For example, consider the fractional part of a number, `fract : ℝ → ℝ`. | |
In this case, you want to add conditions to when a function involving `fract` is continuous, so you | |
get something like this: (assumption `hf` could be weakened, but the important thing is the shape | |
of the conclusion) | |
``` | |
lemma continuous_on.comp_fract {X Y : Type*} [topological_space X] [topological_space Y] | |
{f : X → ℝ → Y} {g : X → ℝ} (hf : continuous ↿f) (hg : continuous g) (h : ∀ s, f s 0 = f s 1) : | |
continuous (λ x, f x (fract (g x))) | |
``` | |
With `continuous_at` you can be even more precise about what to prove in case of discontinuities, | |
see e.g. `continuous_at.comp_div_cases`. | |
-/ | |
library_note "continuity lemma statement" | |