Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.1 kB
/-
Copyright (c) 2021 Apurva Nakade. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Apurva Nakade
-/
import algebra.algebra.basic
import ring_theory.localization.away
import set_theory.game.birthday
import set_theory.surreal.basic
/-!
# Dyadic numbers
Dyadic numbers are obtained by localizing ℤ away from 2. They are the initial object in the category
of rings with no 2-torsion.
## Dyadic surreal numbers
We construct dyadic surreal numbers using the canonical map from ℤ[2 ^ {-1}] to surreals.
As we currently do not have a ring structure on `surreal` we construct this map explicitly. Once we
have the ring structure, this map can be constructed directly by sending `2 ^ {-1}` to `half`.
## Embeddings
The above construction gives us an abelian group embedding ofinto `surreal`. The goal is to
extend this to an embedding of dyadic rationals into `surreal` and use Cauchy sequences of dyadic
rational numbers to construct an ordered field embedding ofinto `surreal`.
-/
universes u
local infix ` ≈ ` := pgame.equiv
namespace pgame
/-- For a natural number `n`, the pre-game `pow_half (n + 1)` is recursively defined as
`{0 | pow_half n}`. These are the explicit expressions of powers of `1 / 2`. By definition, we have
`pow_half 0 = 1` and `pow_half 11 / 2` and we prove later on that
`pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n`. -/
def pow_half : ℕ → pgame
| 0 := 1
| (n + 1) := ⟨punit, punit, 0, λ _, pow_half n⟩
@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl
lemma pow_half_left_moves (n) : (pow_half n).left_moves = punit := by cases n; refl
lemma pow_half_zero_right_moves : (pow_half 0).right_moves = pempty := rfl
lemma pow_half_succ_right_moves (n) : (pow_half (n + 1)).right_moves = punit := rfl
@[simp] lemma pow_half_move_left (n i) : (pow_half n).move_left i = 0 :=
by cases n; cases i; refl
@[simp] lemma pow_half_succ_move_right (n i) : (pow_half (n + 1)).move_right i = pow_half n :=
rfl
instance unique_pow_half_left_moves (n) : unique (pow_half n).left_moves :=
by cases n; exact punit.unique
instance is_empty_pow_half_zero_right_moves : is_empty (pow_half 0).right_moves :=
pempty.is_empty
instance unique_pow_half_succ_right_moves (n) : unique (pow_half (n + 1)).right_moves :=
punit.unique
@[simp] theorem birthday_half : birthday (pow_half 1) = 2 :=
by { rw birthday_def, dsimp, simpa using order.le_succ (1 : ordinal) }
/-- For all natural numbers `n`, the pre-games `pow_half n` are numeric. -/
theorem numeric_pow_half (n) : (pow_half n).numeric :=
begin
induction n with n hn,
{ exact numeric_one },
{ split,
{ simpa using hn.move_left_lt default },
{ exact ⟨λ _, numeric_zero, λ _, hn⟩ } }
end
theorem pow_half_succ_lt_pow_half (n : ℕ) : pow_half (n + 1) < pow_half n :=
(numeric_pow_half (n + 1)).lt_move_right default
theorem pow_half_succ_le_pow_half (n : ℕ) : pow_half (n + 1) ≤ pow_half n :=
(pow_half_succ_lt_pow_half n).le
theorem pow_half_le_one (n : ℕ) : pow_half n ≤ 1 :=
begin
induction n with n hn,
{ exact le_rfl },
{ exact (pow_half_succ_le_pow_half n).trans hn }
end
theorem pow_half_succ_lt_one (n : ℕ) : pow_half (n + 1) < 1 :=
(pow_half_succ_lt_pow_half n).trans_le $ pow_half_le_one n
theorem pow_half_pos (n : ℕ) : 0 < pow_half n :=
by { rw [←lf_iff_lt numeric_zero (numeric_pow_half n), zero_lf_le], simp }
theorem zero_le_pow_half (n : ℕ) : 0 ≤ pow_half n :=
(pow_half_pos n).le
theorem add_pow_half_succ_self_eq_pow_half (n) : pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n :=
begin
induction n using nat.strong_induction_on with n hn,
{ split; rw le_iff_forall_lf; split,
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt,
{ calc 0 + pow_half n.succ ≈ pow_half n.succ : zero_add_equiv _
... < pow_half n : pow_half_succ_lt_pow_half n },
{ calc pow_half n.succ + 0 ≈ pow_half n.succ : add_zero_equiv _
... < pow_half n : pow_half_succ_lt_pow_half n } },
{ cases n, { rintro ⟨ ⟩ },
rintro ⟨ ⟩,
apply lf_of_move_right_le,
swap, exact sum.inl default,
calc pow_half n.succ + pow_half (n.succ + 1)
≤ pow_half n.succ + pow_half n.succ : add_le_add_left (pow_half_succ_le_pow_half _) _
... ≈ pow_half n : hn _ (nat.lt_succ_self n) },
{ simp only [pow_half_move_left, forall_const],
apply lf_of_lt,
calc 00 + 0 : (add_zero_equiv 0).symm
... ≤ pow_half n.succ + 0 : add_le_add_right (zero_le_pow_half _) _
... < pow_half n.succ + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ },
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt,
{ calc pow_half n
≈ pow_half n + 0 : (add_zero_equiv _).symm
... < pow_half n + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ },
{ calc pow_half n
0 + pow_half n : (zero_add_equiv _).symm
... < pow_half n.succ + pow_half n : add_lt_add_right (pow_half_pos _) _ } } }
end
theorem half_add_half_equiv_one : pow_half 1 + pow_half 11 :=
add_pow_half_succ_self_eq_pow_half 0
end pgame
namespace surreal
open pgame
/-- Powers of the surreal number `half`. -/
def pow_half (n : ℕ) : surreal := ⟦⟨pgame.pow_half n, pgame.numeric_pow_half n⟩⟧
@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl
@[simp] lemma double_pow_half_succ_eq_pow_half (n : ℕ) : 2 • pow_half n.succ = pow_half n :=
by { rw two_nsmul, exact quotient.sound (pgame.add_pow_half_succ_self_eq_pow_half n) }
@[simp] lemma nsmul_pow_two_pow_half (n : ℕ) : 2 ^ n • pow_half n = 1 :=
begin
induction n with n hn,
{ simp only [nsmul_one, pow_half_zero, nat.cast_one, pow_zero] },
{ rw [← hn, ← double_pow_half_succ_eq_pow_half n, smul_smul (2^n) 2 (pow_half n.succ),
mul_comm, pow_succ] }
end
@[simp] lemma nsmul_pow_two_pow_half' (n k : ℕ) : 2 ^ n • pow_half (n + k) = pow_half k :=
begin
induction k with k hk,
{ simp only [add_zero, surreal.nsmul_pow_two_pow_half, nat.nat_zero_eq_zero, eq_self_iff_true,
surreal.pow_half_zero] },
{ rw [← double_pow_half_succ_eq_pow_half (n + k), ← double_pow_half_succ_eq_pow_half k,
smul_algebra_smul_comm] at hk,
rwa ← zsmul_eq_zsmul_iff' two_ne_zero }
end
lemma zsmul_pow_two_pow_half (m : ℤ) (n k : ℕ) :
(m * 2 ^ n) • pow_half (n + k) = m • pow_half k :=
begin
rw mul_zsmul,
congr,
norm_cast,
exact nsmul_pow_two_pow_half' n k
end
lemma dyadic_aux {m₁ m₂ : ℤ} {y₁ y₂ : ℕ} (h₂ : m₁ * (2 ^ y₁) = m₂ * (2 ^ y₂)) :
m₁ • pow_half y₂ = m₂ • pow_half y₁ :=
begin
revert m₁ m₂,
wlog h : y₁ ≤ y₂,
intros m₁ m₂ h₂,
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp h,
rw [add_comm, pow_add, ← mul_assoc, mul_eq_mul_right_iff] at h₂,
cases h₂,
{ rw [h₂, add_comm, zsmul_pow_two_pow_half m₂ c y₁] },
{ have := nat.one_le_pow y₁ 2 nat.succ_pos',
norm_cast at h₂, linarith },
end
/-- The additive monoid morphism `dyadic_map` sends ⟦⟨m, 2^n⟩⟧ to m • half ^ n. -/
def dyadic_map : localization.away (2 : ℤ) →+ surreal :=
{ to_fun :=
λ x, localization.lift_on x (λ x y, x • pow_half (submonoid.log y)) $
begin
intros m₁ m₂ n₁ n₂ h₁,
obtain ⟨⟨n₃, y₃, hn₃⟩, h₂⟩ := localization.r_iff_exists.mp h₁,
simp only [subtype.coe_mk, mul_eq_mul_right_iff] at h₂,
cases h₂,
{ simp only,
obtain ⟨a₁, ha₁⟩ := n₁.prop,
obtain ⟨a₂, ha₂⟩ := n₂.prop,
have hn₁ : n₁ = submonoid.pow 2 a₁ := subtype.ext ha₁.symm,
have hn₂ : n₂ = submonoid.pow 2 a₂ := subtype.ext ha₂.symm,
have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two,
rw [hn₁, hn₂, submonoid.log_pow_int_eq_self h₂, submonoid.log_pow_int_eq_self h₂],
apply dyadic_aux,
rwa [ha₁, ha₂] },
{ have : (1 : ℤ) ≤ 2 ^ y₃ := by exact_mod_cast nat.one_le_pow y₃ 2 nat.succ_pos',
linarith }
end,
map_zero' := localization.lift_on_zero _ _,
map_add' := λ x y, localization.induction_on₂ x y $
begin
rintro ⟨a, ⟨b, ⟨b', rfl⟩⟩⟩ ⟨c, ⟨d, ⟨d', rfl⟩⟩⟩,
have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two,
have hpow₂ := submonoid.log_pow_int_eq_self h₂,
simp_rw submonoid.pow_apply at hpow₂,
simp_rw [localization.add_mk, localization.lift_on_mk, subtype.coe_mk,
submonoid.log_mul (int.pow_right_injective h₂), hpow₂],
calc (2 ^ b' * c + 2 ^ d' * a) • pow_half (b' + d')
= (c * 2 ^ b') • pow_half (b' + d') + (a * 2 ^ d') • pow_half (d' + b')
: by simp only [add_smul, mul_comm,add_comm]
... = c • pow_half d' + a • pow_half b' : by simp only [zsmul_pow_two_pow_half]
... = a • pow_half b' + c • pow_half d' : add_comm _ _,
end }
@[simp] lemma dyadic_map_apply (m : ℤ) (p : submonoid.powers (2 : ℤ)) :
dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m p) =
m • pow_half (submonoid.log p) :=
by { rw ← localization.mk_eq_mk', refl }
@[simp] lemma dyadic_map_apply_pow (m : ℤ) (n : ℕ) :
dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m (submonoid.pow 2 n)) =
m • pow_half n :=
by rw [dyadic_map_apply, @submonoid.log_pow_int_eq_self 2 one_lt_two]
/-- We define dyadic surreals as the range of the map `dyadic_map`. -/
def dyadic : set surreal := set.range dyadic_map
-- We conclude with some ideas for further work on surreals; these would make fun projects.
-- TODO show that the map from dyadic rationals to surreals is injective
-- TODO map the reals into the surreals, using dyadic Dedekind cuts
-- TODO show this is a group homomorphism, and injective
-- TODO show the maps from the dyadic rationals and from the reals
-- into the surreals are multiplicative
end surreal