Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Apurva Nakade. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Apurva Nakade | |
-/ | |
import algebra.algebra.basic | |
import ring_theory.localization.away | |
import set_theory.game.birthday | |
import set_theory.surreal.basic | |
/-! | |
# Dyadic numbers | |
Dyadic numbers are obtained by localizing ℤ away from 2. They are the initial object in the category | |
of rings with no 2-torsion. | |
## Dyadic surreal numbers | |
We construct dyadic surreal numbers using the canonical map from ℤ[2 ^ {-1}] to surreals. | |
As we currently do not have a ring structure on `surreal` we construct this map explicitly. Once we | |
have the ring structure, this map can be constructed directly by sending `2 ^ {-1}` to `half`. | |
## Embeddings | |
The above construction gives us an abelian group embedding of ℤ into `surreal`. The goal is to | |
extend this to an embedding of dyadic rationals into `surreal` and use Cauchy sequences of dyadic | |
rational numbers to construct an ordered field embedding of ℝ into `surreal`. | |
-/ | |
universes u | |
local infix ` ≈ ` := pgame.equiv | |
namespace pgame | |
/-- For a natural number `n`, the pre-game `pow_half (n + 1)` is recursively defined as | |
`{0 | pow_half n}`. These are the explicit expressions of powers of `1 / 2`. By definition, we have | |
`pow_half 0 = 1` and `pow_half 1 ≈ 1 / 2` and we prove later on that | |
`pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n`. -/ | |
def pow_half : ℕ → pgame | |
| 0 := 1 | |
| (n + 1) := ⟨punit, punit, 0, λ _, pow_half n⟩ | |
@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl | |
lemma pow_half_left_moves (n) : (pow_half n).left_moves = punit := by cases n; refl | |
lemma pow_half_zero_right_moves : (pow_half 0).right_moves = pempty := rfl | |
lemma pow_half_succ_right_moves (n) : (pow_half (n + 1)).right_moves = punit := rfl | |
@[simp] lemma pow_half_move_left (n i) : (pow_half n).move_left i = 0 := | |
by cases n; cases i; refl | |
@[simp] lemma pow_half_succ_move_right (n i) : (pow_half (n + 1)).move_right i = pow_half n := | |
rfl | |
instance unique_pow_half_left_moves (n) : unique (pow_half n).left_moves := | |
by cases n; exact punit.unique | |
instance is_empty_pow_half_zero_right_moves : is_empty (pow_half 0).right_moves := | |
pempty.is_empty | |
instance unique_pow_half_succ_right_moves (n) : unique (pow_half (n + 1)).right_moves := | |
punit.unique | |
@[simp] theorem birthday_half : birthday (pow_half 1) = 2 := | |
by { rw birthday_def, dsimp, simpa using order.le_succ (1 : ordinal) } | |
/-- For all natural numbers `n`, the pre-games `pow_half n` are numeric. -/ | |
theorem numeric_pow_half (n) : (pow_half n).numeric := | |
begin | |
induction n with n hn, | |
{ exact numeric_one }, | |
{ split, | |
{ simpa using hn.move_left_lt default }, | |
{ exact ⟨λ _, numeric_zero, λ _, hn⟩ } } | |
end | |
theorem pow_half_succ_lt_pow_half (n : ℕ) : pow_half (n + 1) < pow_half n := | |
(numeric_pow_half (n + 1)).lt_move_right default | |
theorem pow_half_succ_le_pow_half (n : ℕ) : pow_half (n + 1) ≤ pow_half n := | |
(pow_half_succ_lt_pow_half n).le | |
theorem pow_half_le_one (n : ℕ) : pow_half n ≤ 1 := | |
begin | |
induction n with n hn, | |
{ exact le_rfl }, | |
{ exact (pow_half_succ_le_pow_half n).trans hn } | |
end | |
theorem pow_half_succ_lt_one (n : ℕ) : pow_half (n + 1) < 1 := | |
(pow_half_succ_lt_pow_half n).trans_le $ pow_half_le_one n | |
theorem pow_half_pos (n : ℕ) : 0 < pow_half n := | |
by { rw [←lf_iff_lt numeric_zero (numeric_pow_half n), zero_lf_le], simp } | |
theorem zero_le_pow_half (n : ℕ) : 0 ≤ pow_half n := | |
(pow_half_pos n).le | |
theorem add_pow_half_succ_self_eq_pow_half (n) : pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n := | |
begin | |
induction n using nat.strong_induction_on with n hn, | |
{ split; rw le_iff_forall_lf; split, | |
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt, | |
{ calc 0 + pow_half n.succ ≈ pow_half n.succ : zero_add_equiv _ | |
... < pow_half n : pow_half_succ_lt_pow_half n }, | |
{ calc pow_half n.succ + 0 ≈ pow_half n.succ : add_zero_equiv _ | |
... < pow_half n : pow_half_succ_lt_pow_half n } }, | |
{ cases n, { rintro ⟨ ⟩ }, | |
rintro ⟨ ⟩, | |
apply lf_of_move_right_le, | |
swap, exact sum.inl default, | |
calc pow_half n.succ + pow_half (n.succ + 1) | |
≤ pow_half n.succ + pow_half n.succ : add_le_add_left (pow_half_succ_le_pow_half _) _ | |
... ≈ pow_half n : hn _ (nat.lt_succ_self n) }, | |
{ simp only [pow_half_move_left, forall_const], | |
apply lf_of_lt, | |
calc 0 ≈ 0 + 0 : (add_zero_equiv 0).symm | |
... ≤ pow_half n.succ + 0 : add_le_add_right (zero_le_pow_half _) _ | |
... < pow_half n.succ + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ }, | |
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt, | |
{ calc pow_half n | |
≈ pow_half n + 0 : (add_zero_equiv _).symm | |
... < pow_half n + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ }, | |
{ calc pow_half n | |
≈ 0 + pow_half n : (zero_add_equiv _).symm | |
... < pow_half n.succ + pow_half n : add_lt_add_right (pow_half_pos _) _ } } } | |
end | |
theorem half_add_half_equiv_one : pow_half 1 + pow_half 1 ≈ 1 := | |
add_pow_half_succ_self_eq_pow_half 0 | |
end pgame | |
namespace surreal | |
open pgame | |
/-- Powers of the surreal number `half`. -/ | |
def pow_half (n : ℕ) : surreal := ⟦⟨pgame.pow_half n, pgame.numeric_pow_half n⟩⟧ | |
@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl | |
@[simp] lemma double_pow_half_succ_eq_pow_half (n : ℕ) : 2 • pow_half n.succ = pow_half n := | |
by { rw two_nsmul, exact quotient.sound (pgame.add_pow_half_succ_self_eq_pow_half n) } | |
@[simp] lemma nsmul_pow_two_pow_half (n : ℕ) : 2 ^ n • pow_half n = 1 := | |
begin | |
induction n with n hn, | |
{ simp only [nsmul_one, pow_half_zero, nat.cast_one, pow_zero] }, | |
{ rw [← hn, ← double_pow_half_succ_eq_pow_half n, smul_smul (2^n) 2 (pow_half n.succ), | |
mul_comm, pow_succ] } | |
end | |
@[simp] lemma nsmul_pow_two_pow_half' (n k : ℕ) : 2 ^ n • pow_half (n + k) = pow_half k := | |
begin | |
induction k with k hk, | |
{ simp only [add_zero, surreal.nsmul_pow_two_pow_half, nat.nat_zero_eq_zero, eq_self_iff_true, | |
surreal.pow_half_zero] }, | |
{ rw [← double_pow_half_succ_eq_pow_half (n + k), ← double_pow_half_succ_eq_pow_half k, | |
smul_algebra_smul_comm] at hk, | |
rwa ← zsmul_eq_zsmul_iff' two_ne_zero } | |
end | |
lemma zsmul_pow_two_pow_half (m : ℤ) (n k : ℕ) : | |
(m * 2 ^ n) • pow_half (n + k) = m • pow_half k := | |
begin | |
rw mul_zsmul, | |
congr, | |
norm_cast, | |
exact nsmul_pow_two_pow_half' n k | |
end | |
lemma dyadic_aux {m₁ m₂ : ℤ} {y₁ y₂ : ℕ} (h₂ : m₁ * (2 ^ y₁) = m₂ * (2 ^ y₂)) : | |
m₁ • pow_half y₂ = m₂ • pow_half y₁ := | |
begin | |
revert m₁ m₂, | |
wlog h : y₁ ≤ y₂, | |
intros m₁ m₂ h₂, | |
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp h, | |
rw [add_comm, pow_add, ← mul_assoc, mul_eq_mul_right_iff] at h₂, | |
cases h₂, | |
{ rw [h₂, add_comm, zsmul_pow_two_pow_half m₂ c y₁] }, | |
{ have := nat.one_le_pow y₁ 2 nat.succ_pos', | |
norm_cast at h₂, linarith }, | |
end | |
/-- The additive monoid morphism `dyadic_map` sends ⟦⟨m, 2^n⟩⟧ to m • half ^ n. -/ | |
def dyadic_map : localization.away (2 : ℤ) →+ surreal := | |
{ to_fun := | |
λ x, localization.lift_on x (λ x y, x • pow_half (submonoid.log y)) $ | |
begin | |
intros m₁ m₂ n₁ n₂ h₁, | |
obtain ⟨⟨n₃, y₃, hn₃⟩, h₂⟩ := localization.r_iff_exists.mp h₁, | |
simp only [subtype.coe_mk, mul_eq_mul_right_iff] at h₂, | |
cases h₂, | |
{ simp only, | |
obtain ⟨a₁, ha₁⟩ := n₁.prop, | |
obtain ⟨a₂, ha₂⟩ := n₂.prop, | |
have hn₁ : n₁ = submonoid.pow 2 a₁ := subtype.ext ha₁.symm, | |
have hn₂ : n₂ = submonoid.pow 2 a₂ := subtype.ext ha₂.symm, | |
have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two, | |
rw [hn₁, hn₂, submonoid.log_pow_int_eq_self h₂, submonoid.log_pow_int_eq_self h₂], | |
apply dyadic_aux, | |
rwa [ha₁, ha₂] }, | |
{ have : (1 : ℤ) ≤ 2 ^ y₃ := by exact_mod_cast nat.one_le_pow y₃ 2 nat.succ_pos', | |
linarith } | |
end, | |
map_zero' := localization.lift_on_zero _ _, | |
map_add' := λ x y, localization.induction_on₂ x y $ | |
begin | |
rintro ⟨a, ⟨b, ⟨b', rfl⟩⟩⟩ ⟨c, ⟨d, ⟨d', rfl⟩⟩⟩, | |
have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two, | |
have hpow₂ := submonoid.log_pow_int_eq_self h₂, | |
simp_rw submonoid.pow_apply at hpow₂, | |
simp_rw [localization.add_mk, localization.lift_on_mk, subtype.coe_mk, | |
submonoid.log_mul (int.pow_right_injective h₂), hpow₂], | |
calc (2 ^ b' * c + 2 ^ d' * a) • pow_half (b' + d') | |
= (c * 2 ^ b') • pow_half (b' + d') + (a * 2 ^ d') • pow_half (d' + b') | |
: by simp only [add_smul, mul_comm,add_comm] | |
... = c • pow_half d' + a • pow_half b' : by simp only [zsmul_pow_two_pow_half] | |
... = a • pow_half b' + c • pow_half d' : add_comm _ _, | |
end } | |
@[simp] lemma dyadic_map_apply (m : ℤ) (p : submonoid.powers (2 : ℤ)) : | |
dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m p) = | |
m • pow_half (submonoid.log p) := | |
by { rw ← localization.mk_eq_mk', refl } | |
@[simp] lemma dyadic_map_apply_pow (m : ℤ) (n : ℕ) : | |
dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m (submonoid.pow 2 n)) = | |
m • pow_half n := | |
by rw [dyadic_map_apply, @submonoid.log_pow_int_eq_self 2 one_lt_two] | |
/-- We define dyadic surreals as the range of the map `dyadic_map`. -/ | |
def dyadic : set surreal := set.range dyadic_map | |
-- We conclude with some ideas for further work on surreals; these would make fun projects. | |
-- TODO show that the map from dyadic rationals to surreals is injective | |
-- TODO map the reals into the surreals, using dyadic Dedekind cuts | |
-- TODO show this is a group homomorphism, and injective | |
-- TODO show the maps from the dyadic rationals and from the reals | |
-- into the surreals are multiplicative | |
end surreal | |