/- Copyright (c) 2021 Apurva Nakade. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Apurva Nakade -/ import algebra.algebra.basic import ring_theory.localization.away import set_theory.game.birthday import set_theory.surreal.basic /-! # Dyadic numbers Dyadic numbers are obtained by localizing ℤ away from 2. They are the initial object in the category of rings with no 2-torsion. ## Dyadic surreal numbers We construct dyadic surreal numbers using the canonical map from ℤ[2 ^ {-1}] to surreals. As we currently do not have a ring structure on `surreal` we construct this map explicitly. Once we have the ring structure, this map can be constructed directly by sending `2 ^ {-1}` to `half`. ## Embeddings The above construction gives us an abelian group embedding of ℤ into `surreal`. The goal is to extend this to an embedding of dyadic rationals into `surreal` and use Cauchy sequences of dyadic rational numbers to construct an ordered field embedding of ℝ into `surreal`. -/ universes u local infix ` ≈ ` := pgame.equiv namespace pgame /-- For a natural number `n`, the pre-game `pow_half (n + 1)` is recursively defined as `{0 | pow_half n}`. These are the explicit expressions of powers of `1 / 2`. By definition, we have `pow_half 0 = 1` and `pow_half 1 ≈ 1 / 2` and we prove later on that `pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n`. -/ def pow_half : ℕ → pgame | 0 := 1 | (n + 1) := ⟨punit, punit, 0, λ _, pow_half n⟩ @[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl lemma pow_half_left_moves (n) : (pow_half n).left_moves = punit := by cases n; refl lemma pow_half_zero_right_moves : (pow_half 0).right_moves = pempty := rfl lemma pow_half_succ_right_moves (n) : (pow_half (n + 1)).right_moves = punit := rfl @[simp] lemma pow_half_move_left (n i) : (pow_half n).move_left i = 0 := by cases n; cases i; refl @[simp] lemma pow_half_succ_move_right (n i) : (pow_half (n + 1)).move_right i = pow_half n := rfl instance unique_pow_half_left_moves (n) : unique (pow_half n).left_moves := by cases n; exact punit.unique instance is_empty_pow_half_zero_right_moves : is_empty (pow_half 0).right_moves := pempty.is_empty instance unique_pow_half_succ_right_moves (n) : unique (pow_half (n + 1)).right_moves := punit.unique @[simp] theorem birthday_half : birthday (pow_half 1) = 2 := by { rw birthday_def, dsimp, simpa using order.le_succ (1 : ordinal) } /-- For all natural numbers `n`, the pre-games `pow_half n` are numeric. -/ theorem numeric_pow_half (n) : (pow_half n).numeric := begin induction n with n hn, { exact numeric_one }, { split, { simpa using hn.move_left_lt default }, { exact ⟨λ _, numeric_zero, λ _, hn⟩ } } end theorem pow_half_succ_lt_pow_half (n : ℕ) : pow_half (n + 1) < pow_half n := (numeric_pow_half (n + 1)).lt_move_right default theorem pow_half_succ_le_pow_half (n : ℕ) : pow_half (n + 1) ≤ pow_half n := (pow_half_succ_lt_pow_half n).le theorem pow_half_le_one (n : ℕ) : pow_half n ≤ 1 := begin induction n with n hn, { exact le_rfl }, { exact (pow_half_succ_le_pow_half n).trans hn } end theorem pow_half_succ_lt_one (n : ℕ) : pow_half (n + 1) < 1 := (pow_half_succ_lt_pow_half n).trans_le $ pow_half_le_one n theorem pow_half_pos (n : ℕ) : 0 < pow_half n := by { rw [←lf_iff_lt numeric_zero (numeric_pow_half n), zero_lf_le], simp } theorem zero_le_pow_half (n : ℕ) : 0 ≤ pow_half n := (pow_half_pos n).le theorem add_pow_half_succ_self_eq_pow_half (n) : pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n := begin induction n using nat.strong_induction_on with n hn, { split; rw le_iff_forall_lf; split, { rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt, { calc 0 + pow_half n.succ ≈ pow_half n.succ : zero_add_equiv _ ... < pow_half n : pow_half_succ_lt_pow_half n }, { calc pow_half n.succ + 0 ≈ pow_half n.succ : add_zero_equiv _ ... < pow_half n : pow_half_succ_lt_pow_half n } }, { cases n, { rintro ⟨ ⟩ }, rintro ⟨ ⟩, apply lf_of_move_right_le, swap, exact sum.inl default, calc pow_half n.succ + pow_half (n.succ + 1) ≤ pow_half n.succ + pow_half n.succ : add_le_add_left (pow_half_succ_le_pow_half _) _ ... ≈ pow_half n : hn _ (nat.lt_succ_self n) }, { simp only [pow_half_move_left, forall_const], apply lf_of_lt, calc 0 ≈ 0 + 0 : (add_zero_equiv 0).symm ... ≤ pow_half n.succ + 0 : add_le_add_right (zero_le_pow_half _) _ ... < pow_half n.succ + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ }, { rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt, { calc pow_half n ≈ pow_half n + 0 : (add_zero_equiv _).symm ... < pow_half n + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ }, { calc pow_half n ≈ 0 + pow_half n : (zero_add_equiv _).symm ... < pow_half n.succ + pow_half n : add_lt_add_right (pow_half_pos _) _ } } } end theorem half_add_half_equiv_one : pow_half 1 + pow_half 1 ≈ 1 := add_pow_half_succ_self_eq_pow_half 0 end pgame namespace surreal open pgame /-- Powers of the surreal number `half`. -/ def pow_half (n : ℕ) : surreal := ⟦⟨pgame.pow_half n, pgame.numeric_pow_half n⟩⟧ @[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl @[simp] lemma double_pow_half_succ_eq_pow_half (n : ℕ) : 2 • pow_half n.succ = pow_half n := by { rw two_nsmul, exact quotient.sound (pgame.add_pow_half_succ_self_eq_pow_half n) } @[simp] lemma nsmul_pow_two_pow_half (n : ℕ) : 2 ^ n • pow_half n = 1 := begin induction n with n hn, { simp only [nsmul_one, pow_half_zero, nat.cast_one, pow_zero] }, { rw [← hn, ← double_pow_half_succ_eq_pow_half n, smul_smul (2^n) 2 (pow_half n.succ), mul_comm, pow_succ] } end @[simp] lemma nsmul_pow_two_pow_half' (n k : ℕ) : 2 ^ n • pow_half (n + k) = pow_half k := begin induction k with k hk, { simp only [add_zero, surreal.nsmul_pow_two_pow_half, nat.nat_zero_eq_zero, eq_self_iff_true, surreal.pow_half_zero] }, { rw [← double_pow_half_succ_eq_pow_half (n + k), ← double_pow_half_succ_eq_pow_half k, smul_algebra_smul_comm] at hk, rwa ← zsmul_eq_zsmul_iff' two_ne_zero } end lemma zsmul_pow_two_pow_half (m : ℤ) (n k : ℕ) : (m * 2 ^ n) • pow_half (n + k) = m • pow_half k := begin rw mul_zsmul, congr, norm_cast, exact nsmul_pow_two_pow_half' n k end lemma dyadic_aux {m₁ m₂ : ℤ} {y₁ y₂ : ℕ} (h₂ : m₁ * (2 ^ y₁) = m₂ * (2 ^ y₂)) : m₁ • pow_half y₂ = m₂ • pow_half y₁ := begin revert m₁ m₂, wlog h : y₁ ≤ y₂, intros m₁ m₂ h₂, obtain ⟨c, rfl⟩ := le_iff_exists_add.mp h, rw [add_comm, pow_add, ← mul_assoc, mul_eq_mul_right_iff] at h₂, cases h₂, { rw [h₂, add_comm, zsmul_pow_two_pow_half m₂ c y₁] }, { have := nat.one_le_pow y₁ 2 nat.succ_pos', norm_cast at h₂, linarith }, end /-- The additive monoid morphism `dyadic_map` sends ⟦⟨m, 2^n⟩⟧ to m • half ^ n. -/ def dyadic_map : localization.away (2 : ℤ) →+ surreal := { to_fun := λ x, localization.lift_on x (λ x y, x • pow_half (submonoid.log y)) $ begin intros m₁ m₂ n₁ n₂ h₁, obtain ⟨⟨n₃, y₃, hn₃⟩, h₂⟩ := localization.r_iff_exists.mp h₁, simp only [subtype.coe_mk, mul_eq_mul_right_iff] at h₂, cases h₂, { simp only, obtain ⟨a₁, ha₁⟩ := n₁.prop, obtain ⟨a₂, ha₂⟩ := n₂.prop, have hn₁ : n₁ = submonoid.pow 2 a₁ := subtype.ext ha₁.symm, have hn₂ : n₂ = submonoid.pow 2 a₂ := subtype.ext ha₂.symm, have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two, rw [hn₁, hn₂, submonoid.log_pow_int_eq_self h₂, submonoid.log_pow_int_eq_self h₂], apply dyadic_aux, rwa [ha₁, ha₂] }, { have : (1 : ℤ) ≤ 2 ^ y₃ := by exact_mod_cast nat.one_le_pow y₃ 2 nat.succ_pos', linarith } end, map_zero' := localization.lift_on_zero _ _, map_add' := λ x y, localization.induction_on₂ x y $ begin rintro ⟨a, ⟨b, ⟨b', rfl⟩⟩⟩ ⟨c, ⟨d, ⟨d', rfl⟩⟩⟩, have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two, have hpow₂ := submonoid.log_pow_int_eq_self h₂, simp_rw submonoid.pow_apply at hpow₂, simp_rw [localization.add_mk, localization.lift_on_mk, subtype.coe_mk, submonoid.log_mul (int.pow_right_injective h₂), hpow₂], calc (2 ^ b' * c + 2 ^ d' * a) • pow_half (b' + d') = (c * 2 ^ b') • pow_half (b' + d') + (a * 2 ^ d') • pow_half (d' + b') : by simp only [add_smul, mul_comm,add_comm] ... = c • pow_half d' + a • pow_half b' : by simp only [zsmul_pow_two_pow_half] ... = a • pow_half b' + c • pow_half d' : add_comm _ _, end } @[simp] lemma dyadic_map_apply (m : ℤ) (p : submonoid.powers (2 : ℤ)) : dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m p) = m • pow_half (submonoid.log p) := by { rw ← localization.mk_eq_mk', refl } @[simp] lemma dyadic_map_apply_pow (m : ℤ) (n : ℕ) : dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m (submonoid.pow 2 n)) = m • pow_half n := by rw [dyadic_map_apply, @submonoid.log_pow_int_eq_self 2 one_lt_two] /-- We define dyadic surreals as the range of the map `dyadic_map`. -/ def dyadic : set surreal := set.range dyadic_map -- We conclude with some ideas for further work on surreals; these would make fun projects. -- TODO show that the map from dyadic rationals to surreals is injective -- TODO map the reals into the surreals, using dyadic Dedekind cuts -- TODO show this is a group homomorphism, and injective -- TODO show the maps from the dyadic rationals and from the reals -- into the surreals are multiplicative end surreal