Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,061 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/-
Copyright (c) 2021 Apurva Nakade. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Apurva Nakade
-/
import algebra.algebra.basic
import ring_theory.localization.away
import set_theory.game.birthday
import set_theory.surreal.basic

/-!
# Dyadic numbers
Dyadic numbers are obtained by localizing ℤ away from 2. They are the initial object in the category
of rings with no 2-torsion.

## Dyadic surreal numbers
We construct dyadic surreal numbers using the canonical map from ℤ[2 ^ {-1}] to surreals.
As we currently do not have a ring structure on `surreal` we construct this map explicitly. Once we
have the ring structure, this map can be constructed directly by sending `2 ^ {-1}` to `half`.

## Embeddings
The above construction gives us an abelian group embedding ofinto `surreal`. The goal is to
extend this to an embedding of dyadic rationals into `surreal` and use Cauchy sequences of dyadic
rational numbers to construct an ordered field embedding ofinto `surreal`.
-/

universes u

local infix ` ≈ ` := pgame.equiv

namespace pgame

/-- For a natural number `n`, the pre-game `pow_half (n + 1)` is recursively defined as
`{0 | pow_half n}`. These are the explicit expressions of powers of `1 / 2`. By definition, we have
`pow_half 0 = 1` and `pow_half 11 / 2` and we prove later on that
`pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n`. -/
def pow_half : ℕ → pgame
| 0       := 1
| (n + 1) := ⟨punit, punit, 0, λ _, pow_half n⟩

@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl

lemma pow_half_left_moves (n) : (pow_half n).left_moves = punit := by cases n; refl
lemma pow_half_zero_right_moves : (pow_half 0).right_moves = pempty := rfl
lemma pow_half_succ_right_moves (n) : (pow_half (n + 1)).right_moves = punit := rfl

@[simp] lemma pow_half_move_left (n i) : (pow_half n).move_left i = 0 :=
by cases n; cases i; refl
@[simp] lemma pow_half_succ_move_right (n i) : (pow_half (n + 1)).move_right i = pow_half n :=
rfl

instance unique_pow_half_left_moves (n) : unique (pow_half n).left_moves :=
by cases n; exact punit.unique
instance is_empty_pow_half_zero_right_moves : is_empty (pow_half 0).right_moves :=
pempty.is_empty
instance unique_pow_half_succ_right_moves (n) : unique (pow_half (n + 1)).right_moves :=
punit.unique

@[simp] theorem birthday_half : birthday (pow_half 1) = 2 :=
by { rw birthday_def, dsimp, simpa using order.le_succ (1 : ordinal) }

/-- For all natural numbers `n`, the pre-games `pow_half n` are numeric. -/
theorem numeric_pow_half (n) : (pow_half n).numeric :=
begin
  induction n with n hn,
  { exact numeric_one },
  { split,
    { simpa using hn.move_left_lt default },
    { exact ⟨λ _, numeric_zero, λ _, hn⟩ } }
end

theorem pow_half_succ_lt_pow_half (n : ℕ) : pow_half (n + 1) < pow_half n :=
(numeric_pow_half (n + 1)).lt_move_right default

theorem pow_half_succ_le_pow_half (n : ℕ) : pow_half (n + 1) ≤ pow_half n :=
(pow_half_succ_lt_pow_half n).le

theorem pow_half_le_one (n : ℕ) : pow_half n ≤ 1 :=
begin
  induction n with n hn,
  { exact le_rfl },
  { exact (pow_half_succ_le_pow_half n).trans hn }
end

theorem pow_half_succ_lt_one (n : ℕ) : pow_half (n + 1) < 1 :=
(pow_half_succ_lt_pow_half n).trans_le $ pow_half_le_one n

theorem pow_half_pos (n : ℕ) : 0 < pow_half n :=
by { rw [←lf_iff_lt numeric_zero (numeric_pow_half n), zero_lf_le], simp }

theorem zero_le_pow_half (n : ℕ) : 0 ≤ pow_half n :=
(pow_half_pos n).le

theorem add_pow_half_succ_self_eq_pow_half (n) : pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n :=
begin
  induction n using nat.strong_induction_on with n hn,
  { split; rw le_iff_forall_lf; split,
    { rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt,
      { calc 0 + pow_half n.succ ≈ pow_half n.succ : zero_add_equiv _
                             ... < pow_half n      : pow_half_succ_lt_pow_half n },
      { calc pow_half n.succ + 0 ≈ pow_half n.succ : add_zero_equiv _
                             ... < pow_half n      : pow_half_succ_lt_pow_half n } },
    { cases n, { rintro ⟨ ⟩ },
      rintro ⟨ ⟩,
      apply lf_of_move_right_le,
      swap, exact sum.inl default,
      calc  pow_half n.succ + pow_half (n.succ + 1)
          ≤ pow_half n.succ + pow_half n.succ : add_le_add_left (pow_half_succ_le_pow_half _) _
      ... ≈ pow_half n                        : hn _ (nat.lt_succ_self n) },
    { simp only [pow_half_move_left, forall_const],
      apply lf_of_lt,
      calc 00 + 0                            : (add_zero_equiv 0).symm
        ... ≤ pow_half n.succ + 0               : add_le_add_right (zero_le_pow_half _) _
        ... < pow_half n.succ + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ },
    { rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); apply lf_of_lt,
      { calc pow_half n
            ≈ pow_half n + 0               : (add_zero_equiv _).symm
        ... < pow_half n + pow_half n.succ : add_lt_add_left (pow_half_pos _) _ },
      { calc pow_half n
            ≈ 0 + pow_half n               : (zero_add_equiv _).symm
        ... < pow_half n.succ + pow_half n : add_lt_add_right (pow_half_pos _) _  } } }
end

theorem half_add_half_equiv_one : pow_half 1 + pow_half 11 :=
add_pow_half_succ_self_eq_pow_half 0

end pgame

namespace surreal
open pgame

/-- Powers of the surreal number `half`. -/
def pow_half (n : ℕ) : surreal := ⟦⟨pgame.pow_half n, pgame.numeric_pow_half n⟩⟧

@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl

@[simp] lemma double_pow_half_succ_eq_pow_half (n : ℕ) : 2 • pow_half n.succ = pow_half n :=
by { rw two_nsmul, exact quotient.sound (pgame.add_pow_half_succ_self_eq_pow_half n) }

@[simp] lemma nsmul_pow_two_pow_half (n : ℕ) : 2 ^ n • pow_half n = 1 :=
begin
  induction n with n hn,
  { simp only [nsmul_one, pow_half_zero, nat.cast_one, pow_zero] },
  { rw [← hn, ← double_pow_half_succ_eq_pow_half n, smul_smul (2^n) 2 (pow_half n.succ),
        mul_comm, pow_succ] }
end

@[simp] lemma nsmul_pow_two_pow_half' (n k : ℕ) : 2 ^ n • pow_half (n + k) = pow_half k :=
begin
  induction k with k hk,
  { simp only [add_zero, surreal.nsmul_pow_two_pow_half, nat.nat_zero_eq_zero, eq_self_iff_true,
               surreal.pow_half_zero] },
  { rw [← double_pow_half_succ_eq_pow_half (n + k), ← double_pow_half_succ_eq_pow_half k,
        smul_algebra_smul_comm] at hk,
    rwa ← zsmul_eq_zsmul_iff' two_ne_zero }
end

lemma zsmul_pow_two_pow_half (m : ℤ) (n k : ℕ) :
  (m * 2 ^ n) • pow_half (n + k) = m • pow_half k :=
begin
  rw mul_zsmul,
  congr,
  norm_cast,
  exact nsmul_pow_two_pow_half' n k
end

lemma dyadic_aux {m₁ m₂ : ℤ} {y₁ y₂ : ℕ} (h₂ : m₁ * (2 ^ y₁) = m₂ * (2 ^ y₂)) :
  m₁ • pow_half y₂ = m₂ • pow_half y₁ :=
begin
  revert m₁ m₂,
  wlog h : y₁ ≤ y₂,
  intros m₁ m₂ h₂,
  obtain ⟨c, rfl⟩ := le_iff_exists_add.mp h,
  rw [add_comm, pow_add, ← mul_assoc, mul_eq_mul_right_iff] at h₂,
  cases h₂,
  { rw [h₂, add_comm, zsmul_pow_two_pow_half m₂ c y₁] },
  { have := nat.one_le_pow y₁ 2 nat.succ_pos',
    norm_cast at h₂, linarith },
end

/-- The additive monoid morphism `dyadic_map` sends ⟦⟨m, 2^n⟩⟧ to m • half ^ n. -/
def dyadic_map : localization.away (2 : ℤ) →+ surreal :=
{ to_fun :=
  λ x, localization.lift_on x (λ x y, x • pow_half (submonoid.log y)) $
  begin
    intros m₁ m₂ n₁ n₂ h₁,
    obtain ⟨⟨n₃, y₃, hn₃⟩, h₂⟩ := localization.r_iff_exists.mp h₁,
    simp only [subtype.coe_mk, mul_eq_mul_right_iff] at h₂,
    cases h₂,
    { simp only,
      obtain ⟨a₁, ha₁⟩ := n₁.prop,
      obtain ⟨a₂, ha₂⟩ := n₂.prop,
      have hn₁ : n₁ = submonoid.pow 2 a₁ := subtype.ext ha₁.symm,
      have hn₂ : n₂ = submonoid.pow 2 a₂ := subtype.ext ha₂.symm,
      have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two,
      rw [hn₁, hn₂, submonoid.log_pow_int_eq_self h₂, submonoid.log_pow_int_eq_self h₂],
      apply dyadic_aux,
      rwa [ha₁, ha₂] },
    { have : (1 : ℤ) ≤ 2 ^ y₃ := by exact_mod_cast nat.one_le_pow y₃ 2 nat.succ_pos',
      linarith }
    end,
  map_zero' := localization.lift_on_zero _ _,
  map_add' := λ x y, localization.induction_on₂ x y $
  begin
    rintro ⟨a, ⟨b, ⟨b', rfl⟩⟩⟩ ⟨c, ⟨d, ⟨d', rfl⟩⟩⟩,
    have h₂ : 1 < (2 : ℤ).nat_abs, from one_lt_two,
    have hpow₂ := submonoid.log_pow_int_eq_self h₂,
    simp_rw submonoid.pow_apply at hpow₂,
    simp_rw [localization.add_mk, localization.lift_on_mk, subtype.coe_mk,
      submonoid.log_mul (int.pow_right_injective h₂), hpow₂],
    calc (2 ^ b' * c + 2 ^ d' * a) • pow_half (b' + d')
        = (c * 2 ^ b') • pow_half (b' + d') + (a * 2 ^ d') • pow_half (d' + b')
        : by simp only [add_smul, mul_comm,add_comm]
    ... = c • pow_half d' + a • pow_half b' : by simp only [zsmul_pow_two_pow_half]
    ... = a • pow_half b' + c • pow_half d' : add_comm _ _,
  end }

@[simp] lemma dyadic_map_apply (m : ℤ) (p : submonoid.powers (2 : ℤ)) :
  dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m p) =
  m • pow_half (submonoid.log p) :=
by { rw ← localization.mk_eq_mk', refl }

@[simp] lemma dyadic_map_apply_pow (m : ℤ) (n : ℕ) :
  dyadic_map (is_localization.mk' (localization (submonoid.powers 2)) m (submonoid.pow 2 n)) =
  m • pow_half n :=
by rw [dyadic_map_apply, @submonoid.log_pow_int_eq_self 2 one_lt_two]

/-- We define dyadic surreals as the range of the map `dyadic_map`. -/
def dyadic : set surreal := set.range dyadic_map

-- We conclude with some ideas for further work on surreals; these would make fun projects.

-- TODO show that the map from dyadic rationals to surreals is injective

-- TODO map the reals into the surreals, using dyadic Dedekind cuts
-- TODO show this is a group homomorphism, and injective

-- TODO show the maps from the dyadic rationals and from the reals
-- into the surreals are multiplicative

end surreal